Diagnostic Tools for
Identifying High-Risk Software Modules:
A Case-Based Reasoning Approach

Prepared for
NASA Independent Verification and Validation Facility

FAU Technical Report TR-CSE-00-20

Taghi M. Khoshgoftaar*
Edward B. Allen
Yevgeniy Berkovich
Fletcher D. Ross
Florida Atlantic University
Boca Raton, Florida USA

June 2000

*Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-
ing Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Ra-
ton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@ese.fau.edu, URL:
www.cse.fau.edu/esel/.

FAU Technical Report TR-CSE-00-20

Executive Summary

Various classification modeling techniques have been applied to software quality
data. Typically, software metrics are used as independent variables to predict a
quality metric. such as whether or not a module is fault-prone. Our prior applied
research, sponsored by NASA IV&V Facility, has summarized methods for modeling
of fault-prone software modules.

Khoshgoftaar and Allen, and others have observed that published modeling
methods may not always produce models of sufficient accuracy. In other words, a
modeling technique may not be as robust as it appears in a published study. Thus,
more accurate and robust modeling methods are needed.

Case-based reasoning (CBR) is an alternative modeling method based on auto-
mated reasoning processes. It has proven useful in a wide variety of domains. CBR
is especially useful when there is limited domain knowledge and when an optimal
solution process is not known. However, to our knowledge, few CBR systems for
software quality modeling have been developed.

A c¢BRr system finds a solution to a new problem based on past experience,
represented by cases in a case library. Each case is indexed for quick retrieval
according to the problem domain. A solution process algorithm uses a similarity
function to measure the relationship between the new problem and each case. The
algorithm retrieves relevant cases and determines a solution to the new problem. A
CBR system can function as a software quality classification model. The objective
is to assign a module to the correct class early in development, i.e., whether it is
fault-prone or not. A good “solution” is a class assignment that turns out to be
correct after fault data is known.

This paper presents an empirical case study of a very large telecommunications
system to illustrate the potential value of CBR as a tool for classifying software
modules according to the risk of faults. Our modeling experiments found that a
CBR system with raw software product metrics as independent variables was robust
compared to selected subsets of metrics, transformation of metrics with principal
components analysis, and an expanded set of independent variables with software
process metrics. We also explored an innovative classification rule in the CBR
context. We compared the CBR models to tree-based models built in prior studies.

CBR has several inherent advantages over other classification techniques for
software quality modeling.

e CBR systems can be designed to alert users when a new case is outside the
bounds of current experience. This is attractive when an answer of “I don’t
know™ is better than a guess.

e Many CBR systems add or delete cases as new information becomes available,
thereby adapting to a changing world.

e CBR is scalable to very large case libraries, and is amenable to concurrent
retrieval techniques.

FAU Technical Report TR-CSE-00-20

e Once the most similar case(s) has been selected from the library, its detailed
description, including qualitative attributes, can help one interpret the auto-
mated classification.

e Users of CBR systems can easily see that the solution was derived in a rea-
sonable way, and hence, the ¢BR system lends itself to user acceptance. CBR
systems are not “black boxes”.

Reywords: operational software risk, software reliability, faults, fault-prone mod-
ules, software metrics, classification, case-based reasoning, CBR

FAU Technical Report TR-CSE-00-20 4
1 Introduction

A recent special issue of IEEFE Software on software measurement provides a snapshot of
the state of the art in the measurement and modeling field [42]. Measurements and models
are the means for understanding, controlling, and improving development processes [42].
Successful measurement programs in development organizations are inextricably linked
to empirical models that are clearly related to business goals [41]. Our prior applied
research, sponsored by NASA IV&V Facility, has summarized methods for modeling of
fault-prone software modules [16].

Software product metrics are quantitative attributes of software abstractions. Com-
monly measured abstractions include call graphs, control flow graphs, and statements.
For example, fan-in and fan-out [39] are attributes of a node in a call graph, where
each node is an abstraction of a module and each edge represents a call from one to
another. Many software product metrics are attributes of a control flow graph in which
the nodes represent decision statements or branch destinations and the edges represent
potential flow of control. McCabe’s cyclomatic complexity is one of the best known in
this category [38]. Lines of code is the best known statement metric. Other examples
are counts of operators and operands [8]. Commercially available software code analyz-
ers measure more than 50 software product metrics. Our laboratory has the Logiscope
and DATRIX packages, as well as a metric analyzer for ¢ which we implemented as a re-
search tool. Logiscope was contributed by Verilog, S.A., and DATRIX was contributed by
Bell Canada. Our industry collaborators also have several commercial software product
metric analyzers.

Software process metrics can be derived from problem reporting systems and configu-

o

FAU Technical Report TR-CSE-00-20

ration management systems. Process metrics are especially important for legacy systems
and developments with significant reuse. Research by Khoshgoftaar et al. found that
reuse (25, 26], the history of corrected faults [21], and the experience of programmers [22]
can be significantly associated with faults.

Various classification modeling techniques have been applied to software quality
data. Our research group has used discriminant analysis [25], logistic regression [12],
decision trees [18, 43], and artificial neural networks [32, 33] for software quality model-
ing. In addition, others have used discriminant power [44], optimal set reduction [2], and
fuzzy classification [5]. In this paper, a Type [misclassification is when a model clas-
sifies a software module as fault-prone which is actually not fault-prone, and a Type II
misclassification is when a model classifies a software module as not fault-prone which is
actually fault-prone. A misclassification rate is the number misclassified divided by the
actual number in the class.

Khoshgoftaar and Allen [17], and others [36] have observed that published model-
ing methods may not always produce models of sufficient accuracy. In other words, a
modeling technique may not be as robust as it appears in a published study. Thus, more
accurate and robust modeling methods are needed.

Case-based reasoning (CBR) is an alternative modeling method based on automated
reasoning processes. It has proven useful in a wide variety of domains [35] including
software cost estimation, software reuse, software design, and software help desk. CBR is
especially useful when there is limited domain knowledge and when an optimal solution
process is not known [37]. A recent book [37] presents the state of the art in CBR, the
lessons learned from specific applications, and directions for the future. However, to our

knowledge, few CBR systems for software quality modeling have been developed [7, 30].

FAU Technical Report TR-CSE-00-20 6

A CBR system is a software system that implements specific data structures, algo-
rithms, and policies as design features. A CBR system finds a solution to a new problem
based on past experience, represented by cases in a case library. Each case is indexed
for quick retrieval according to the problem domain. A solution process algorithm uses a
similarity function to measure the relationship between the new problem and each case.
The algorithm retrieves relevant cases and determines a solution to the new problem.

A CBR system can function as a software quality classification model. The “problem”
is to assign a module to the correct class early in development, i.e., whether it is fault-
prone or not. A good “solution” is a class assignment that turns out to be correct after
fault data is known. A case consists of all available information on a module. This
includes whether it is fault-prone or not, its product attributes, and its process history.
Software product metrics are indices representing module attributes. Process metrics are
indices representing the process history.

In principle, CBR has several advantages over other classification techniques for soft-

ware quality modeling.

e CBR systems can be designed to alert users when a new case is outside the bounds
of current experience. This is attractive when an answer of “I don’t know” is better
than a guess. In contrast, a typical classification model always gives some kind of

answer, evern n extreme cases.

e Many CBR systems add or delete cases as new information becomes available,
thereby adapting to a changing world [48]. Other techniques, on the other hand,
may require frequent reestimation of model parameters to track recent data. We

suspect that retrieval and decision rules are usually more stable than model pa-

FAU Technical Report TR-CSE-00-20

=1

rameters of other techniques.

e CBR is scalable to very large case libraries, and is amenable to concurrent retrieval
techniques [11]. This means that fast retrieval is feasible as the size of the case

library scales up.

e Once the most similar case(s) has been selected from the library, its detailed de-
scription, including qualitative attributes, can help one interpret the automated
classification. Most other classification techniques, on the other hand, provide lit-

tle concrete interpretive information.

e Users of CBR systems can easily see that the solution was derived in a reasonable
way, and hence, the CBR system lends itself to user acceptance. CBR systems are

not “black boxes”.

This paper presents an empirical case study of a very large telecommunications
system to illustrate the potential value of CBR as a tool for classifying faulty software
modules.

The remainder of this paper gives an overview of CBR, empirical results, and conclu-
sions. The empirical case study used the Software Measurement Analysis and Reliability
Toolkit (SMART) [19], which was developed in 1998 with support from the Empirical
Software Engineering Laboratory at Florida Atlantic University, and industrial partners.
Appendix A summarizes features of SMART; Appendix B explains calculations for prin-

cipal components analysis; and Appendix C presents detailed results of experiments.

FAU Technical Report TR-CSE-00-20 8

Table 1: Notation

Syvmbol Definition

i Index for unclassified modules

j Index for cases. j = 1,...,n

k Index for metrics, k =1,...,m

Tk Value of metric & of module ¢

X; Vector of metrics values for module ¢

Cik Value of metric £ of case j

c; Vector of metric values for case j

Yj Number of faults in module j

W Weights

a Scale factor

d;; Similarity (i.e., distance) between x; and c;

dpy Average distance to fault-prone nearest neighbors
doupy Average distance to not fault-prone nearest neighbors
N Set of nearest-neighbor cases

nAS Number of cases in A/

Class(x;) Predicted class of module ¢

Cr Cost of a Type [misclassification

Crr Cost of a Type II misclassification

2 Case-Based Reasoning

(Case-based reasoning finds solutions to new problems based on past experience, rep-
resented by cases in a case library. The case library and the associated retrieval and
decision rules constitute a CBR model. For an introduction to case-based reasoning, see
(34]. Table 1 lists notation introduced in this section.

In this paper, we focus on classification problems in software quality modeling. Sup-
pose each case in the library has known attributes and class membership. Given a case
with unknown class, we predict its class to be the same as the class of the most sim-
ilar case(s) in the library, where similarity is defined in terms of case attributes. This

paper applies this approach to classification of software modules as fault-prone, or not.

FAU Technical Report TR-CSE-00-20 9

(Case-based reasoning is often compared to rule-based inference and model-based problem
solving systems [34]. Application to software engineering problem solving is a topic for
further research [47].

A case consists of all available information on a module. This includes its class and
all measurements. In this study, the case library consists of the fit data set, having n
modules. The case library represents the past experiences of the development organiza-
tion. Let ¢; be the vector of attributes of the j module in the case library, and let c;j

be the k" attribute of that module.

SMART offer the option to standardize all variables, using the following equation.
L (1)

where z;; is the standardized value and r, and s, are the mean and standard deviation
over ¢ for all z;;, respectively. This option also performs a similar transformation all the
cases, ¢ji. In the following, the notation x;; and c¢;j; indicate either raw or standardized

values according to the context.

Similarity function. From these past cases we want to extract a few that most closely
resembles our unclassified module. Let x; be the vector of attributes of the i** unclassified
module, and &, be the k' attribute of that module. Several measures of similarity are
presented in the literature according to the problem domain, the availability of attribute
data, and whether data types are categorical, discrete, real, etc. [34]. Since our data is
strictly quantitative, we think of “similarity” as the “distance” between cases.
Fuclidean Distance considers each independent variable as a dimension of an m-

dimensional space. A module is represented by a point in this space. The Euclidean

FAU Technical Report TR-CSE-00-20 10

distance between a module and a case is their weighted distance in this space. The
weights, if any, are those provided by the analyst.

T |;1'2
d?'.f = (Z(T-"-’k((-’jk — ;'L';k))z) (2)

k=1

Nearest neighbors. After the tool calculates distances between a module x; and all
cases using the similarity function, the distances are sorted. The cases, c;, with the
smallest distances, d;;, are of primary interest. The set of nearest neighbors, N, is
an input to the solution algorithm below. The analyst selects the number of nearest
neighbors. Based on a preliminary empirical investigation with software quality data,

ny € {1,3,5,7,9} appears to be adequate [19].

Solution algorithm. FEach solution algorithm assigns the unclassified module to a
class. Predictions of a quantitative dependent variable made by the solution algorithm
can be scaled in order to improve the accuracy of class predictions. Many solution

algorithms supported by SMART calculate y; and then classify the module by

not fault-prone I ay; < 6
Class(x;) = ol ! (3)

fault-prone Otherwise

In our case studies, we use # = 1. To choose a preferred value of «, the analyst designates
the fit data set as the case library and also as the target data set, and supplies a list of
candidate scale factors, a. The analyst can then choose a preferred value of o based on
experiment results calculated by cross-validation. When the target is the test data set
or when the target is a current data set, the analyst can then specify the preferred scale

factor, a.

FAU Technical Report TR-CSE-00-20 11

The unweighted average solution algorithm averages the dependent variable, y;, of

the closest ny modules from the case library to form a value of g; for the target module.

|

nar

Z Y (4)

JEN

yi =

In this study, y; is the number of faults discovered by customers. We are primarily

concerned with classification, so the value predicted is not as important as the predicted

class, given by Equation (3).

Data clustering. In addition to the basic CBR model, the case study examined an
extension by cluster analysis to enhance classification. The case library is partitioned
into clusters according to the actual class of each case. SMART compares a module to
the fault-prone cluster and the not fault-prone cluster and determines the closest group.
SMART supports the same similarity functions and solution algorithms here as in the
classic CBR model.

Instead of scale factors, this approach provides for a list of cost ratios, C;/Crr. The
analyst can calculate a cost ratio as the ratio of the cost of a Type I misclassification, (7,
to the cost of a Type IT misclassification, C'r;. However, this is often difficult to estimate,
and therefore, SMART provides for experiments with a list of values. In software quality
modeling, a Type IT misclassification can be much more serious than a Type I, because
the cost of releasing fault-prone modules to customers is usually much more expensive
than wasting effort enhancing low-risk modules. The analyst can experiment to choose
a preferred C';/Cyy value.

The classification rule used here is based on our recent work with statistical classifi-

cation techniques [23]. For an unclassified module, x;, let d,z,(x;) be the average distance

FAU Technical Report TR-CSE-00-20 12

to not fault-prone nearest-neighbor cases, and let dy,(x;) be the average distance to fault-

prone nearest-neighbor cases. The module 1s classified by

dm{x‘) C
not fault-prone If > =
Class(x;) = dppp(x:) 7 Cr (5)

fault-prone Otherwise

where C;/Cy; is experimentally chosen. The analyst can choose C;/C; by a similar

method as a, described above.

3 Empirical Case Study

This section presents Berkovich’s empirical investigation of the advantages of CBR for

software quality modeling [1].

3.1 System Description

We studied the same system as [24] and [29]. We conducted a case study of a very
large legacy telecommunications system, written in a high-level language (Protel) using
the procedural development paradigm, and maintained by professional programmers in
a large organization. The entire system had significantly more than ten million lines of
code. This embedded-computer application included numerous finite-state machines. We
studied four consecutive releases, which we label 1 through 4 in this paper. In this study,
the fit data set consisted of measurements of Release 1, and test data sets consisted
of measurements of Releases 2, 3, and 4. Even though the software was significantly
enhanced from release to release, the project staff considered the software development

process to be stable.

FAU Technical Report TR-CSE-00-20 13

A module consisted of a set of related source-code files. Fault data was collected at
the module-level by the problem reporting system. A module was considered fault-prone
if any faults discovered by customers resulted in changes to source code in the module,
and not fault-prone otherwise. Faults discovered in deployed telecommunications systems
are typically extremely expensive, because, in addition to down-time due to failures, visits
to customer sites are usually required to repair them.

Analysis of configuration-management data identified modules that were unchanged
from the prior release. More than 99% of the unchanged modules had no faults. There
were too few fault-prone modules for effective modeling. This case study considered only
updated modules, that is, those that were new or had at least one update to source code
since the prior release. For modeling, we selected updated modules with no missing data
in relevant variables. These modules had several million lines of code in a few thousand
modules in each release.

Fault data was collected from the problem reporting system. Problem reports were
tabulated and anomalies were resolved. Table 2 summarizes the distribution of faults
discovered by customers. The proportion of modules with no faults among the updated
modules of the fit data set (Release 1) was 0.937, and the proportion with at least one fault
was 0.063. Such a small set of modules is often difficult to identify early in development.
In this study, due to a lack of detailed data, we assumed that customers used the releases
a similar amount of time. However, we suspect that each release was used somewhat less
than its predecessors. Comparison of fault-discovery rates across releases is a topic for
future research.

Pragmatic considerations usually determine the set of available software metrics. We

do not advocate collecting a particular set of metrics for software quality models to the

FAU Technical Report TR-CSE-00-20 14

Table 2: Distribution of faults discovered by customers [24]

Percentage of updated modules
Release
Faults 1 2 3 4
0 93.7% 95.3% 98.7% 97.7%
] 5.1% 3.9% 1.0% 2.1%
2 0.7% 0.7% 0.2% 0.2%
3 03% 01% 01% 0.1%
*

4 0.1%
6 *
9 *

* one module

exclusion of others recommended in the literature. We prefer a data-mining approach
to exploiting metric data [6], analyzing a broad set of metrics, rather than limiting data
collection according to predetermined research questions. A small set of predetermined
measures may not be significant in all development environments due to variation in
development processes. Thus, we prefer to analyze a large set of candidate software
metrics.

This project used Enhanced Measurement for Early Risk Assessment of Latent De-
fects (EMERALD), which is a decision-support system that includes software-measurement
facilities and software quality models [9]. Because marginal data collection costs were
modest, EMERALD provided over fifty source-code metrics. Preliminary data analysis se-
lected product metrics aggregated to the module level that were appropriate for modeling
purposes, as listed in Table 3. Counts of procedure calls were derived from call graphs.
Some product metrics were measures of a module’s control flow graph, which consists of
nodes and arcs depicting the flow of control. Other product metrics quantified attributes

of statements.

FAU Technical Report TR-CSE-00-20 15

Process metrics listed in Table 4 were tabulated from the configuration manage-
ment system which maintained records regarding updates by each designer, and from the
problem reporting system which maintained records on past problems.

Execution metrics listed in Table 5 were forecast from deployment records [10] and
laboratory measurements of an earlier release. Future research will refine these metrics.

EMERALD helps software designers and managers to assess risks of embedded soft-
ware and thereby to improve software quality [9]. It was developed by Nortel Networks
(formerly Northern Telecom) in partnership with Bell Canada and others. At various
points in the development process, EMERALD’s software quality models predict module

risk based on available measurements.

3.2 Preprocessing Data

For models using raw metrics as independent variables, we transformed all variables using
Equation (1) so that they would all have the same unit of measure, namely, a standard
deviation.

For models involving principal components, this empirical study preprocessed data in
the same manner as [46]. Preliminary data analysis [14] found that the execution metrics
were each not correlated very much with any other metrics. Moreover, the product
metrics were not correlated with the process metrics. However, the product metrics were
highly correlated with each other and similarly, the process metrics were highly correlated
with each other. For this study, we transformed the 24 product metrics listed above with
principal components analysis (PCA) [45], resulting in 6 principal components (“domain

metrics”). Details on principal components analysis are in Appendix B [45]. The domain

FAU Technical Report TR-CSE-00-20 16

Table 3: Software product metrics [29]

Symbol Description

Call Graph Metrics

CALUNGQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others.

CAL2= CAL — CALUNQ

where CAL is the total number of calls

Control Flow Graph Metrics

CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs, i.e., if-then constructs.
LOP Number of loop constructs.

CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.
CNDSPNMX Maximum span of branches of conditional arcs.
CTRNSTMX Maximum control structure nesting.

KNT Number of knots. A “knot” in a control flow graph is where arcs cross
due to a violation of structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.

NDSEXT Number of exit nodes.

NDSPND Number of pending nodes, i.e., dead code segments.
LGPATH Base 2 logarithm of the number of independent paths.

Statement Metrics

FILINCU@Q Number of distinct include files.

LOC Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.

VARGLBUS Number of global variables used.

VARSPNSM Total span of variables.

VARSPNMX Maximum span of variables.

VARUSDUQ Number of distinct variables used.

VARUSD?2 Number of second and following uses of variables.
VARUSD?2 = VARUSD — VARUSDUQ
where VARUSD is the total number of variable uses

FAU Technical Report TR-CSE-00-20 17

Table 4: Software process metrics [29]

Symbol Description

DES_PR Number of problems found by designers during development of the
current release.

BETA_PR Number of problems found during beta testing of the current release.

DES_FIX Number of problems fixed that were found by designers in the prior

BETA_FIX 1{:{11(;?1‘{;8[of problems fixed that were found by beta testing of the prior

CUST_FIX

REQ.UPD
TOT_UPD
REQ

SRC_GRO
SRC_MOD

release.
Number of problems fixed that were found by customers in the prior

release. .
Number of changes to the code due to new requirements.

Total number of changes to the code for any reason.

Number of distinct requirements that caused changes to the module.
Net increase in lines of code.

Net new and changed lines of code (deleted lines are not counted).

UNQ_DES Number of different designers making changes.

VLO_UPD Number of updates to this module by designers who had 10 or less total
updates in entire company career.

LO_UPD Number of updates to this module by designers who had between 11
and 20 total updates in entire company career.

UPD_CAR Number of updates that designers had in their company careers.

Table 5: Software execution metrics [29]

Symbol Description

USAGE Deployment percentage of the module.

RESCPU Execution time of an average transaction on a system serving con-
sulners.

BUSCPU Execution time of an average transaction on a system serving busi-

TANCPU

nesses.
[Execution time of an average transaction on a tandem system.

FAU Technical Report TR-CSE-00-20 18

Table 6: Factor pattern for principal components of product metrics.

Prod1 Prod?2 Prod3 Prod4 Prod5 Prod6
CALUNQ 0.90241 0.05180 0.10442 0.23226 0.17394 0.06161
VARUSDU(@ 0.89496 0.18889 0.15268 0.17704 0.14681 0.19375

LoC 0.88610 0.28067 0.18160 0.16929 0.16431 0.14445
NDSENT 0.87966 -0.11142 0.01770 0.18394 0.10988 0.17201
STMEXE 0.86869 0.25870 0.17612 0.17324 0.26880 0.07169
STMCTL 0.86701 0.26070 0.27411 0.17258 0.08509 0.17429

NDSEXT 0.84668 0.01970 0.10855 0.20099 0.08568 0.35294
STMDEC 0.84595 0.20127 0.14148 0.14922 0.07117 0.14898

IFTH 0.84569 0.34158 0.27880 0.18162 0.10404 0.10659
NDSINT 0.84185 0.34355 0.27606 0.15248 0.18487 0.10920
CNDNOT 0.83478 0.31173 0.26233 0.15217 0.23697 0.17495
LOP 0.82816 0.10817 0.20842 0.01714 0.02129 -0.09590

VARGLBUS 0.80191 0.35962 0.20123 0.14369 0.21197 0.20453
VARUSD2 0.79088 0.44096 0.27108 0.11186 0.18082 0.12928
CAL2 0.59715 0.20418 0.07284 0.19317 0.56903 -0.05255
VARSPNSM 0.39174 0.86022 (.17718 0.10430 0.06747 0.08423
VARSPNMX 0.14039 0.83489 0.17722 0.35150 0.10357 0.09136
CNDSPNMX 0.12121 0.27629 0.75661 0.14289 0.25648 0.30600
CTRNSTMX 0.32233 0.09595 0.70922 0.42101 -0.00726 -0.01574
CNDSPNSM 0.60974 0.21553 0.64240 0.00704 0.22007 0.13087
FILINCUQ 0.39561 0.25790 0.15541 0.72651 -0.03570 0.16963

LGPATH 0.21017 0.37957 0.35793 0.63962 0.16986 -0.04151
KNT 0.21362 0.06906 0.17464 -0.00640 0.88896 0.09719
NDSPND 0.40212 0.14886 0.21690 0.07507 0.08412 0.81557
Variance 11.61638 2.82091 2.37167 1.69515 1.64281 1.23002
% Var. 48.40% 11.75% 9.88% 7.06% 6.85% 5.13%
Cum. % 48.40% 60.15% 70.03% 77.09% 83.94% 89.07%

Stopping rule: at least 89% of variance

metrics are named Prodl through Prod6. Table 6 shows the rotated factor pattern.
Each table entry is the correlation between a product metric and a domain metric. To
aid interpretation, the largest value in each row is bold

We also transformed the 14 process metrics listed above with principal components

analysis, resulting in 8 principal components (“domain metrics”). The domain metrics

FAU Technical Report TR-CSE-00-20 19

are named Presl through Pres8. Table 7 shows the rotated factor pattern.

Not only is principal components analysis a technique for transforming data into
orthogonal variables, it also is a data reduction technique which ignores insignificant
variation in the data. As shown in Table 6 and 7, both principal components analyses
accounted for more than 89% of the variance. The 24 product metrics were reduced to

only 6 domain metrics, and the 14 process metrics were reduced to only 8 domain metrics.

3.3 Empirical Results

For ease of reference, we used descriptive names for the models used in the research.
Table 8 summarizes the independent variables of each model in this case study. Ta-
ble 9 summarizes the accuracy of all these models. Detailed results are presented in
Appendix C [1].

Model cART-28 [40] had twenty-eight candidate independent variables, as shown
in Table 8, of which CART found four to be significant. Model RAW-4 was a CBR model
based on the same four independent variables, standardized. Similarly, model CART-
42 [40] had forty-two candidates of which eleven were significant. Model RAW-11 was
a CBR model based on the same eleven independent variables, standardized.! We de-
note standardized variables by prime (). Specifically, model RAW-4 employed USAGE',
FILINCUQ, NDSENT', and VARSPNMX' variables. Model RAW-11 used TOT_-UPD/,
SRC_MOD', USAGE'. UNQ_DES', UPD_CAR', CNDSPNSM', FILINCUQ), NDSENT',
NDSINT , STMCTL', and VARSPNMX' metrics.

Model CART-10 [46] had ten candidate independent variables, as shown in Table 8,

INote that standardization is irrelevant to a tree-based model, but is relevant to calculating similarity.

™~

FAU Technical Report TR-CSE-00-20

adURIIRA JO 0768 Iseo] Je o[l Fuiddorg

WBYIT6 %SYF8 URTLL %669 U/FTI Y6T'ES %TT'0V %HLEGT % "wny
%90°L I%H0€"L LHEEL %LyL %H6¢6 WBLOET %BEEVD HLEGC A %
9G886°0 0cze0'T 864C0'T 8L9FV0°'T 6900€°T 6¢6¢8°T TCLE0'C OT08SG'E OOURLIBA
8¥0€8°0 09100°0- S8IZIT'0 TI¥PRO'0 GEVGE'O0 69¢61°0 L6SST'0 GCGLE'0 qd Sdd
¢9c00°0 9€686°0 TFI6T0°0 6FPIE0'0 @8620°0 €1F¢0'0 61¥90°0 686800 XI1d VILHH
164TT°0 SPIC0°0 T9¥P96°0 C6LCT0 T€990°0 9LEOOD CELGO0 626V1°0 dd VILAH
021900 6%2€0°0 6EEST0 OPTL6'0 6EOVO'0 0LEc0'0 42e80°0 €¥0C1°0 X1 LSI1D
70LE0 T19EP0°0 6E€990°0 LOSEOD'0 LL698°0 <OLVO'0 GS6CC’0 86910 X1l SHd
99LLT°0 GTT00°0 062€0°0 6L600°0 €%9L0°0 9PC06°0 ¢RYLO'0 SOPLIO dOW DUS
¢E800°0- 09920°0 0002€0°0- 6ESTO0 TSPOO'0 8€9€6°0 T00L0°0 66EV00 OHD DUS
8CS6T'0 €92¢90°0 09020°0 SECSO0 6ILET'0 PELIT'O 90SS8°0 RE9Y0E0 adn o1
0¢c00°0- €Z8C0°0 GETY0'0 98EC0'0 SPS/L0O'0 GLES00 8TVI6'0 CIYLRI0 dd OIA
069120 SLGFT'0 €62ET°0 €1261°0 G96G2°0 6VL20°0 609¢6°0 SOTSL'0 SHA ONI
0vOLL°0- 91ZF0°0- ZOTS0°0 PLLGO'0 GT69F'0 SVIIT°0 PO9RI'0- 66L9L°0 HVD dd]
6SCre’0 2E690°0 TOP60°0 LLTPT'O 9066¢°0 ¢6L81°0 0S¢6¢°0 8T86L'0 (Ud/1 LOL
[CPS0°0 LEIS0°0 €2L90°0 09900°0- 9€80¢°0- €PLEOO- 0LS8C0 PSSI80 Oa4u
G99TT0 TFPC00°0 LOTSO'0 Z6VIO0 92010°0- 09€L1°0 OFOSI'0 €¥906°0 (d DY
QS2d] LSod] QSL] GSAl] pSod] e8] TS [S2d]
‘sotrjaut ssodold jo syuouoduwod edourid 1o uiegyed 1o0ioe 1) oqe],
J J | J J I J I

FAU Technical Report TR-CSE-00-20

Table 8: Models

Independent Variables
Software Metrics

Model Product Process Execution

CART-28 [40] 24 raw 4 raw

CART-42 [40] 24 raw 14 raw 4 raw

CART-10 [46] 6 PCA 4 raw

CART-18 [46] 6 PCA 8 pCA 4 raw

RAW-4 4 standardized selected by CART-28

RAW-11 11 standardized selected by CART-42

RAW-28 24 standardized 4 standardized

RAW-42 24 standardized 14 standardized 4 standardized

PCA-5 5 selected by cARrT-10

PCA-T 7 selected by carr-18

PCA-10 6 PCA 4 raw

PCA-18 6 PCA 8 PCA 4 raw

Table 9: Summary of accuracy of models
Misclassification rates
Release 1 Release 2 Release 3 Release 4

Model Typel Typell Typel Typell Typel Typell Typel Typell
CART-28 [40] 27.6% 29.7% 24.4% 29.6% 255% 25.5% 30.3% 27.2%
CART-42 [40] 27.7% 26.6% 27.9% 28.6% 30.4% 34.0% 33.7% 27.2%
CART-10 [46] 30.4% 30.6% 26.6% 24.9% 28.8% 21.3% 32.7% 27.2%
CART-18 [46] 38.7% 22.3% 29.3% 21.2% 29.9% 191% 32.7% 19.6%
RAW-4 30.3% 27.5% 30.6% 24.9% 32.2% 21.3% 39.6% 29.3%
RAW-11 28.9% 30.1% 31.5% 24.9% 32.7% 21.3% 41.0% 34.0%
RAW-28 30.4% 31.4% 30.5% 31.2% 325% 25.5% 424% 22.9%
RAW-42 27.7% 31.0% 28.1% 323% 29.6% 25.5% 39.4% 30.4%
PCA-5 31.1% 35.8% 31.8% 28.6% 33.8% 29.8% 41.5% 28.3%
PCA-T 34.3% 32.6% 285% 38.1% 29.7% 21.3% 343% 32.6%
PCA-10 32.1% 28.6% 32.1% 28.8% 33.9% 27.7% 38.1% 27.2%
PCA-18 25.6% 35.4% 26.7% 35.0% 27.4% 27.7% 36.1% 29.3%

The numbers are rounded to the nearest tenth.
Using scale factor approach.

—

8]

FAU Technical Report TR-CSE-00-20 2

of which CART found five to be significant. Model PCA-5 was a CBR model based on the
same five independent variables. Similarly, model CART-18 [46] had eighteen candidates
of which seven were significant. Model PCA-T7 was a CBR model based on the same seven
independent variables. Specifically, model PcA-5 used USAGE, TANCPU, Prodl, Prod2,
and Prod/ principal components variables. And, finally, model PCA-7 employed USAGE,

Presl, Press, Pres6, Prodl, Prod2, and Prodj principal components metrics.

Uniformly weighted raw metrics as predictors. We ran the SMART tool against
the entire set of 42 standardized metrics available for our case study. Here, we used equal
weights for all the metrics and Euclidean distance as a distance algorithm. We performed
our experiments for a single case, and for the clusters of 3, 5, 7, and 9 cases. We wanted
to find out how to configure SMART’s parameters to allow us to achieve optimal results.
For this experiment we used the data sets including modules from Releases 1 and 2 with
all 42 standardized metrics.

Our hypothesis was that we will achieve better results, in other words, build a model
that performs better, by using the 7 or 9 most similar modules from the case library for
each module in test data set.

As we are able to see in Table 10, the best results (shown bold) were achieved when
we build models with 7 or 9 most similar modules (i.e., cases) as opposed to models with
1, 3, or 5 similar cases. These results clearly support our hypothesis. Restricting the
CBR system to only one nearest neighbor is vulnerable to misleading results, because the
one chosen may be an outlier. When the set of nearest neighbors has 7 or 9 cases, the

effect of an outlier, if any, is diluted.

FAU Technical Report TR-CSE-00-20 23

Table 10: Uniform weights for model RAW-42

Release 1 Release 2
Neighbors Type 1 Type 11 Type 1 Type 1L
1 case 4.883% R81.223% 5.169% 79.365%
3 cases 12.895% 57.205% 13.423% 62.434%
5 cases 18.918% 46.288% 18.486% 47.619%

7 cases 23.947% 35.371% 23.470% 39.153%
9 cases 27.749% 31.004% 28.085% 32.275%

Weighting USAGE. We conducted a set of experiments with different weights for
the USAGFE metric.? (See Equation (2).) All other metrics had a weight of one. Prior
research had found USAGE to be an important variable [10]. Our intuition suggested
that a larger weight for USAGE, which would mean the increased contribution of USAGE
to the model, should produce a better model.

Our hypothesis was that in most cases, the models with a higher weight of USAGE
will perform much better than those using a lower weight of USAGE.

The tables in Appendix C show that for most experiments the best models use the
weight USAGE higher than 1. In fact, in most of the models, we preferred USAGE with
a weight between 5 and 10. As one can observe in the tables in Appendix C, in all cases,

the preferred weight of USAGE turned out to be a significant factor in quality prediction.

Experiments with the scale factor. The scale factor, a, in Equation (3) is a very
important parameter in building a good model. Scale factors, when applied to the model
can give more weight to the modules of a particular type. In this research, we used the
scale factors to give more weight to the fault-prone modules.

In this study, the scale factor was empirically chosen by looking at the misclassifica-

*Similarly, weights were chosen for USAGE'.

FAU Technical Report TR-CSE-00-20 24

tion rates for cross-validation of Release 1 and for predictions of Release 2. We preferred
approximately equal Type I and Type II misclassification rates. The Table 11 shows
how different the model’s accuracy is for different scale factors. The model used for this
experiment was the RAW-28 Model that uses all 28 product and execution raw metrics.
As indicated in Table 11, we used various scale factors, a, to find out how scale factors
affect model RAW-28. As we were able to determine, there was a very significant differ-
ence in misclassification rates for different a. For example, with a scale factor o = 1.0,
the Type I and Type II misclassification rates are extremely unbalanced, for example,
0.409% and 98.253% respectively, for Release 1. But, for a = 9.0, the misclassification

rates are very balanced, 30.351% and 31.441% respectively, for Release 1.

Principal components as predictors. Based on the experiments presented in Ap-
pendix C and summarized in Table 12, we were able to make following observations for
the scale factor approach (Equation (3)).

Model PCA-5 had the predictors chosen to be significant by [46]. Model PCA-10
had all six product domain metrics and four raw execution metrics as predictors. Com-
parison of PCA-10 and PCA-5 showed that they performed very similarly. It was very
hard to determine any significant improvement of using PCA-5 versus PCA-10, as can be
observed in Table 12. This illustrates that CBR can be a robust tool for software quality
prediction and does not need a model selection mechanism in order to successfully make
software quality prediction. The metric selection made for PCA-5 did not seem to have
any significant positive effect on the models’ accuracies.

Model PCA-7 had predictors chosen to be significant by [46].-Model pCcA-18 had all

6 product domain metrics, all 8 process domain metrics, and all 4 raw execution metrics

D
™1

FAU Technical Report TR-CSE-00-20

BHITRTE WNEVETY %eEe e %0LSTE BLTTIE %6SV0E WIVPIE %IGE0E 00°0¢
WBITSTE UESETY UTELCT %0LSTE BLITTE %6 0L BIVPIE %IGE0E 00702
BHITR'TE WNEVETY %oee e %0LeTE BLTETTE %6ST0E BIVYIE %IGE0E 00701
%9T8°CC %EVE TV AUTEI'IT %O0LSTE %LITIE %650 %IVP'IC %I9€0¢ 006

BOET 6L %1S6'Te %92V 0¥V %L66'FT O66E1°€S %TI00°€T %98EPS %PRYET 008

BOET 6L %TS6'TC %92V 0F %L66'FT K6EF°€S %T00ET %98EFS %IPRYET 0072

BOET6E A1S671C %92r 0V %L66°V1 %6EVES %I00°€T %E8EPS %IPRYET 0079

BOET6E A1S671C %92V 0V %L66'V1 O66EV°ES %I00°€T %98SPS %IRYEL 007G

WOEV'ES BEIRTT WB6TECS %LeSL Wree's9 - %0ST9 %966'89 %LEII 00'v

WGEV'ES BEIRTT W6IESS %LeSL WBree's9 - %0ST9 %966'89 %LEI9 00°€

BIGE'LY %ETY9 %969°9L %0SET BO61°9L %Tll'E WHET6E'6L %60S°E 08'e

WHI6ELY HETIY %96579L %0SGET %HO6T°9L %TIT'E %ELE6L %60S°E 09°¢

WHI6ELY %HETIY %96479L %0GET %HO6T 9L %TIT'E WBELE6L %60S°E ove

%000°6L %ECH'E oSV 16 %06VC %86G°ER %RYIT HOLTTR %9691 0¢'¢

%000°GL %ETH'E %O8YT6 %061C %8697€8 %88I'T %OLT TS %9691 00¢

%000°¢L hEThE %68V 16 %061 %8647ES %88Y'1 %6LEVR %969°1 081

NYEF 08 %ETTT BEVLG6 UHTEIT %09E"88 YYET'] BOVLe6 %996°0 09°1

BESLTR %E6Y'T WELY' L6 %0E0"] %0016 %EE90 %I8RE6 GRG0 0r'1

%LG6°98 %LOT'T %000°00T %0€8°0 NHeele6 %Heer 0 %EEYC6 U6EVO 0c'1

HOET68 %9260 %000°00T %9120 WBICYE6 BEVED %HEST86 %6010 00°1

I1 °dA T [2dAT 11 °dAT, [odAT, 1 2dAT, [odAT, IT °dAT, [2dAT, 0

f osealay ¢ osealay FAEELEIEN | [osea]ay
SOJRI UOIVRIIISSR[ISTIA
QZ-MVY [epout jo £ovinooe uo 1090vf o[eds jo joedw] 11 9[qr],
| | _ I | I J I J !

FAU Technical Report TR-CSE-00-20 26

Table 12: Accuracy of PCA models

Release 1 Release 2 Release 3 Release 4
Model Typel Typell Typel Typell Typel Typell Typel Type Il
PCA-D 31.1% 35.8% 31.8% 28.6% 33.8% 20.8% 41.5% 28.3%
PCcA-T 34.3% 32.6% 28.5% 38.1% 29.7% 21.3% 343% 32.6%
rca-10 32.1% 28.6% 32.1% 28.8% 33.9% 27.7% 38.1% 27.2%
PCA-18 25.6% 35.4% 26.7% 35.0% 27.4% 27.7% 36.1% 29.3%

This 1s a subset of Table 9.

Using scale-factor approach.

as predictors. Comparison between our PCA-18 and PCA-T showed that there was a very
small difference in the models” accuracies with a slight advantage to the PCA-18 Model,
as can be seen in Table 12. In this case, as well as in the previous one, we can see
that the prior selection of the metrics did not improve significantly the models and their

accuracies.

Comparisons of raw metrics and principal components as predictors. Com-
paring our raw metrics models to other models, we discovered that the raw metric models
performed slightly better than all the other models, which were using the PCA-generated
metrics and the scale-factor approach. This can be seen by inspecting Tables 19 through
24 and 37 through 39 from Appendix C for raw metric models, and Tables 25 through
36 for PCcA models, which are summarized in Table 9. The difference was not very large
— only about 1 to 3 percentage points on the average. This comparison seems to imply
that SMART-generated models” accuracies using the scale-factor approach does not im-

prove significantly if standardized raw metrics are replaced with PCA-generated metrics.

FAU Technical Report TR-CSE-00-20 27

Table 13: Accuracy of RAW models

Release 1 Release 2 Release 3 Release 4
Model Typel Typell Typel Typell Typel Typell Typel Typell
RAW-4 30.3% 27.5% 30.6% 24.9% 32.2% 21.3% 39.6% 29.3%
RAW-11 28.9% 30.1% 31.5% 24.9% 32.7% 21.3% 41.0% 34.0%
This 1s a subset of Table 9.

Process metrics as additional predictors. We wanted to find out whether the
models that use product and execution metrics as well as process metrics will have lower
misclassification rates than those that only use product and execution metrics. Of all of
our models, RAW-4, RAW-28, PCA-5, and PCA-10 were using only product and execution
metrics, while the models RAW-11, PCA-T, and PCA-18 were using product, process, and
execution metrics.

For the purposes of our experiments using the scale-factor approach, we wanted to

examine the following three comparisons:

e RAW-4 vs. RAW-11

e PCA-5 vs. PCA-T

e PCA-10 vs. PCA-18

1

For the first comparison we used the data presented in Appendix C from Tables 19,
20, and 21 to compare against the results displayed in Tables 22, 23, and 24. As can be
seen from Table 13, the models performed almost identically. This allows us to suggest
that adding the process metrics into these scale-factor CBR models did not bring any

improvement.

FAU Technical Report TR-CSE-00-20 28

For the second comparison, we used data presented in Appendix C in Tables 28, 29,
and 30 and compared it against the data displayed in Tables 25, 26, and 27. After
studying this data, as well as Table 12, we came to a conclusion, that the model using
the process metrics, PCA-T, did, indeed, had a slightly better accuracy than the PCA-5
model. But this advantage was very inconclusive and could not be considered significant.

And, lastly, we compared the results presented in Appendix C from Tables 34, 35,
and 36 against the results displayed in Tables 31, 32, and 33. After inspecting these
tables, as well as Table 12, we concluded that, once again, use of the process metrics did

not create any improvement over the scale-factor CBR model that did not use the process

metrics.

Experiments with cost ratios. We carried out a set of experiments to find out
whether we could produce better models using various cost-ratios, C;/Cy, than the
models we obtained using the scale factor, @. We ran these experiments for our PCA-
generated models (PCA-5, PCA-T, PCA-10, and PCA-18). In Table 14, we can see the best
results for each of the PCA-generated models.

As can be seen from the Table 17, the models created using the cost-ratio (Cr/Cir)
approach are similar or better than the models built with scale factor («) approach. In
fact, for the PCA-10 model, the accuracy using scale factor approach was significantly
better, while, for the three other models, the accuracy was somewhat better using cost
ratio approach. It seems that cost-ratio approach takes fuller advantage of the models
that use only the most significant PCA domain metrics, PCA-5 and PCA-7. In order to
select the best cost-ratio, we experimented with various values of cost ratio, C;/Cy;.

Based on the cross-validation results from Release 1, we were able to select the cost-ratio

FAU Technical Report TR-CSE-00-20 29

Table 14: Experiments Using Cost Ratios

weight of Misclassifications
Model Release USAGE Neighbors C;/Cpp Typel Type Il

PCA-10 1 9 9 0.59 30.468% 31.441%
pPCA-10 2 9 9 0.59 23.101% 41.270%
PCA-10 3 9 9 0.59 28.678% 36.170%
PCA-10 4 9 9 0.59 39.012% 26.087%
PCA-5 1 17 9 0.46 26.257% 27.074%
PCA-5H 2 17 9 0.46 22.310% 32.804%
PCA-D 3 17 9 0.46 25.644% 29.787%
PCA-H 4 17 9 0.46 37.983% 28.261%
PCA-18 1 9 9 0.65 28.947% 27.511%
PCA-18 2 9 9 0.65 29.088% 26.984%
PCA-18 3 9 9 0.65 37.979% 21.277%
PCA-18 4 9 9 0.65 41.765% 19.149%
PCA-T 1 10 9 0.54 25.000% 24.891%
PCA-T 2 10 9 0.54 24.815% 29.101%
PCA-T 3 10 9 0.54 27.418% 19.149%
PCA-T 4 10 9 0.54 29.671% 28.261%

with the most balanced misclassification rates. (Release 2 results were not used when
choosing C/Cy.)

Tables 15 and 16 illustrate the importance of using different cost ratios in building
the PCA-T and PCA-18 models. By defining a cost ratio, we are trying to give greater
importance to fault-prone modules. Recall that Type Il misclassifications are more costly
to the software development team than Type I. As the Tables 15 and 16 indicate, the
difference in models’ accuracies for different values of C'j/Cyy is very significant. We
chose the cost ratio C';/C; = 0.54 for model PCA-7 and C7/Crr = 0.65 for model PCA-
18. These values yield the most balanced misclassification rates for Release 1.

We are actively pursuing further experiments with the cost-ratio approach, in par-

30

FAU Technical Report TR-CSE-00-20

%000°00T %0000 %000°00T %0000 %000°00T %000°0 %000°00T %000°0 00¢
%928°L6 %98€°0 %eL8L6 %I0V0 %968°96 %SLY0 %09L %6 %S00 001
%0L8°G8 %I19T'1 WLTOE6 %GPET %G00 16 %6¥6°0 %920°98 %O0LT'T 060
%%99°69 %0Te'E %OveETL %L0TY WrLOvL %968°€ %BOTY 9L %688°E 080
%I9TES %LIE6 LYY LG %GL90T %BLIE09 %98E'S %68E6S RIST6 010
BI6ETY %UR0EVL %IRIVY UTI6TFT %P6L0S UBIET'ET %R06'8F %¥90°vI G970
%OLS'GE %UPPR0Z %099°LZ %YET0T BOLTTY %esELT %SYT9E %8ESST 0970
WESLYE %O¥PTe %099°Lc %ETSTIT %elT 0V %G998T %Ve9EE %LIE6l 65970
%969°€E %GL9€T %099°Le %969°CC %R0S9E %OI6'6T %P00TE %60¥'0C RGO
%969°€E %0LTGT UYOVET UYS6'EC %le6VE BILOTTE WBIET0E %9691 L9
BEEP 0L BTEOV'IZ NLLTTC HTLTCT %CIREE Ulvvec %BCE6T %SI8'TEe 990
WSYE6C UTL6'LE NHLLETTE USSTIZ UBLITTE %S0LE€Z %¥L0lZ %900ve €S0
%T92°8C %TLI'6Z %6FI'61T %BIV'LT %I0T'6C %SI8PE %I68'FT %000°SC PS'0
%000°CT %TCOTE U6VT6T %e6L8C USEE9C %R6E9C UBI8CET WKYOV9T €970
%000°ST %S0SEE U6VI6T %0800 %6EETVE BESY'le %llece %U6RLE 290
%000°6% BI9PCE UTTOLT %BPLOTE %OISEL %USIL'8E %PeEs1e %esl6e 1970
WBET6'EC YEET'LE UP6STFL %00TE€E %eee e %eev0e %L80°0¢ %c0L0€ 090
%9698 %BIOL6S %HERED %8e8 6V %6 BEIE LY ULIGOT %abe’Sy 0F0
WHLBO'T WHLYY'BL %HERE9 %BGEY0L BKOLE %eLL 99 %LIET %L08°C9 080
%000°0 %0L9°¢6 200070 WICTL8 %RE0T %ro6es UELRO %09L708 020
%000°0 WHIEE66 %000°0 %eeh 96 %0000 %6866 %LEVOD %69¢°¥6 01°0
1 2dAg, [2dAT, 1 odAT, [odA, 1 @dAT, [odAT, I1 »dAT, [odAT, HAH[1H
J oseooy ¢ asea[ey 7 asealoy 1 oseaoy

—

S9)RI O RIYISSRIIST]

__|4rwq.m Twﬁo_.ﬁ o one.ld 1500 0 .—UMPT.:.M ¢l 21q%],

~

31

FAU Technical Report TR-CSE-00-20

%000°001 %000°0 %000°00T %000°0 %000°00T %000°0 %000°00T %000°0 00¢
%928°L6 %60€°0 WBELY L6 UTLED %8ET'G6 UVETO0 %L0G 96 %eTE0 00T
%LG698 %06¢°¢C %965°9L %068°C WEVEI8 BYIL'T %EST'G8 BEIV'T 060
%969°8G UPSCIT %LVPLS BEE6OT UPEF'T9 %TIV'S %e61'V9 %BEC'S 080
WBSYE 6T BIVPIE %Teese %TI96°LT %99¢LE %ELOCE BIT90F %LE9TE 0L°0
WWLTLZ 6LVEE %TES ST %LEL6T %0STIE %I6EET YVIV'BE %YIRCEE 690
%L8O'9T BTIFCE UTESCT %ITITE UVORTE BLVEFE BVE6TE %BI9EVE 890
%000°6C %T80°LE %TELGT YTLYEE UIVLIE %LST9T %PTYEE %T809Z L90
WBETE'ET %UCEL6E UTCESCT %IINCE %U6ST0E %LT6'LT %BST6C %U8¥'LZz 9970
%TS9°0% %SIL' TV %LLTTT %IS6°LE %P86°9T %880°6% %ITS LT %LP6'8C 99°0
GG 6T WELLEY WLLTTC BITI6E %SSHIz %ISS0E %I02°9C %9¢50€ V90
WBGIS6L USTIGE WLLTTC %66T TV %SSEIT ULEVCE %BCECT %809°TE €970
%EIS6T WLV LY %U6FT'6T %S8Leh %O0IRET %E66°EE %LIOPC %CI0EE 290
WSLY'RT %6LT 6V %6VI'6T %IL0FY UISLCe %SLeeE %yvite %LSEVE 1970
WSLFST %P0 1S %10 LT %le9sy %9010 %IETLE %1Leee %E90°9€ 09°0
BOETFT %209°09 %99L°CT %8¥6'2s %869°Cl %VIovray %P8TSl %I08Ey ¢G9O
%9698 WHLEE69 KBEREY %6¥919 %¥TE6 WNOPLES BLIGOT %LEYTSG 0970
WHLBO'T WY8TI8 $LLTy %0E6°CL U9IT'C WBITT 0L %0E6°€ %9¢S°¢9 0¥'0
200070 %800°¢6 %8EIT WIEULs %6250 %80T8 %ELRO %e86°LL 0€0
700070 %95V'86 %0000 Bo1V'¥6 %000°0 %0LL06 %LEVO %HLIS'88 020
00070 %rL6°66 %000°0 %960°66 %0000 %EIE86 %0000 %809°96 010
I1 »dAg, [2dAg, 1 odAg, [odAT, I1 °dAT, [2dAT, 1 odAg, [odA, 15 [15
| oseooy ¢ aseaay] 7 9sea[oy [esealey
S9Y1RI WOIVRIYISSRISIY
QI-Vd [Ppowt uo orjed 1500 jo joeduay 9T a[qe],
I | I J I l J | J J l

FAU Technical Report TR-CSE-00-20 32

Table 17: Comparison of cost ratio vs. scale factor

Release 1 Release 2 Release 3 Release 4

Model Typel Typell Typel Typell Typel Typell Typel Typell
Scale Factor

pca-5 31.1% 35.8% 31.8% 28.6% 33.8% 298% 41.5% 28.3%
PCA-T 34.3% 32.6% 28.5% 381% 29.7% 21.3% 34.3% 32.6%
pca-10 32.1% 28.6% 32.1% 288% 33.9% 27.7% 38.1% 27.2%
PCA-18 25.6% 354% 26.7% 35.0% 27.4% 27.7% 36.1% 29.3%
Cost Ratio

PCA-5 26.3% 271% 223% 32.8% 25.6% 29.8% 38.0% 28.3%
PCA-T 25.0% 24.9% 24.8% 29.1% 27.4% 19.1% 29.7% 28.3%
PCA-10 30.5% 31.4% 23.1% 41.3% 28.7% 36.2% 39.0% 26.1%
PCA-18 28.9% 27.5% 29.1% 27.0% 38.0% 21.3% 41.8% 19.1%

ticular, we are applying this approach to the standardized raw metrics models to com-
plement the PCA-based results above. The further and more complete experiments with
C'1/Cy; are to be carried out in future research, where we will compare this approach to

other methodologies.

Comparison with tree-based models. We compared PCA-based CBR models using
the scale-factor approach to tree-based models. The ¢BR models used the same metrics
that were selected as significant by the tree-based models in previous work [46]. Our
hypothesis was that CBR using the same domain metrics as models from the previous
research can obtain results that are not significantly worse than those obtained in the
previous work [46]. If so, that would support the hypothesis that CBR is a robust tool
that is competitive with other techniques..

Comparisons between PCA-5 and PCA-7 CBR-based models (scale-factor approach)
and tree-based models, CART-10 and CART-18, built in [46] had showed that the tree-

based models with PCA domain metrics performed significantly better than our PCA-5 and

FAU Technical Report TR-CSE-00-20 33

Table 18: Comparison of CBR and tree-based models

Misclassification rates
Release 1 Release 2 Release 3 Release 4

Model Typel Typell Typel Typell Typel Typell Typel Typell
CART-10 [46] 30.4% 30.6% 26.6% 24.9% 28.8% 21.3% 32.7% 27.2%
CART-18 [46] 38.7% 22.3% 29.3% 21.2% 29.9% 19.1% 32.7% 19.6%
Scale Factor Approach
PCA-D 31.1% 35.8% 31.8% 28.6% 33.8% 29.8% 41.5% 28.3%
PCA-T 34.3% 32.6% 28.5% 38.1% 29.7% 21.3% 34.3% 32.6%
Cost Ratio Approach
PCA-5 26.3% 27.1% 22.3% 32.8% 25.6% 29.8% 38.0% 28.3%
PCA-T 25.0% 24.9% 24.8% 29.1% 27.4% 19.1% 29.7% 28.3%

This is a subset of Table 9 and Table 14.

PCA-T models. We can see the evidence of this in Tables 25 through 30 in Appendix C.
The tree-based models™ accuracy is shown in Table 18. A possible reason for this may
be the fact that we used equal weights for all the variables, except for USAGE in the
CBR models. The results may be much more favorable for CBR models if we included
appropriate weights with the corresponding metrics. Overall, PCA-5 and PCA-T CBR-
based models’™ accuracy remained acceptable given that uniform weights were used to

determine the accuracy of these models. This may be a subject of further research.

4 Conclusions

Overall, after carrying out our experiments, we observed that, generally, CBR models

using scale factors did not gain in performance from any of the following:

e Replacing the raw metrics with the most significant raw metrics, selected by tree-

based models.

FAU Technical Report TR-CSE-00-20 34
e Replacing the raw metrics with the PCA-generated metrics.

e Replacing the PCA-generated metrics with most significant PCA-generated metrics,

selected by tree-based models.

e Adding the process metrics to the models that are using only product and execution

metrics.

The above conclusions indicate that CBR methodology based on scale factors may
not benefit from prior selection of the most significant metrics and is capable of producing
acceptable results with raw metrics without having to convert them into PCA domains.
However, many analysts would prefer the more parsimonious models (fewer independent
variables) on general principles. Moreover, when we have a large number of independent
variables, the computation of misclassification rates takes more time and computing
resources. In that case, it is useful to carry out some kind of selection of the most
significant metrics in order to allow for faster processing and and to save computing
resources.

However, the CBR methodology based on cost ratios generally produced models that
were more accurate than corresponding scale factor models. The disadvantages listed
above for the scale-factor approach may not apply to the cost-ratio approach. For exam-
ple, adding process metrics did improve cost-ratio models. The cost-ratio methodology
deserves further investigation.

Although our comparisons of CBR models versus the tree-based models built in [46]
and [40] were not always advantageous, we were able, for some cases achieve similar

results.

FAU Technical Report TR-CSE-00-20 35

Our use of uniform weights for all metrics, except for USAGE, suggests that we have

a lot of areas for future research and improvement.

Acknowledgments

We thank Ken McGill for his encouragement and support. We thank Bojan Cukic for
helpful discussions. This work was supported in part by Cooperative Agreement NCC 2-
1141 from NASA Ames Research Center, Software Technology Division (Independent
Verification and Validation Facility). The findings and opinions in this paper belong
solely to the authors, and are not necessarily those of the sponsor.

References

]

2]

(4]

[5]

(8]

Y. Berkovich. Software quality prediction using case-based reasoning. Master’s
thesis, Florida Atlantic University, Boca Raton, Florida USA, Aug. 2000. Advised
by Taghi M. Khoshgoftaar.

L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable models
with optimized set reduction for identifying high-risk software components. [EEE
Transactions on Software Engineering, 19(11):1028-1044, Nov. 1993.

J. Deng. Classification of software quality using tree modeling with the S-Plus
algorithm. Master’s thesis, Florida Atlantic University, Boca Raton, Florida, Dec.
1999. Advised by Taghi M. Khoshgoftaar.

W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications.
John Wiley & Sons, New York, 1984.

C. Ebert. Classification techniques for metric-based software development. Software
Quality Journal, 5(4):255-272, Dec. 1996.

U. M. Fayyvad. Data mining and knowledge discovery: Making sense out of data.
IEEE Expert, 11(4):20-25, Oct. 1996.

K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality pre-
diction. International Journal of Software Engineering and Knowledge Engineering,
9(6), 1999. In press.

M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

FAU Technical Report TR-CSE-00-20 36

[9]

[10]

1]

[12]

[13]

(19]

J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand.
EMERALD: Software metrics and models on the desktop. IEEE Software, 13(5):56~
60, Sept. 1996.

W. D. Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen. Application of a
usage profile in software quality models. In Proceedings of the Third European Con-
ference on Software Maintenance and Reengineering, pages 148-157, Amsterdam,
Netherlands, Mar. 1999. IEEE Computer Society.

B. P. Kettler, J. A. Hendler, and M. P. Evett. Massively parallel support for a
case-based planning system. [EEE Expert, 9(1):8-14, Feb. 1994.

T. M. Khoshgoftaar and E. B. Allen. Classification techniques for predicting software
quality: Lessons learned. In Proceedings of the Annual Oregon Workshop on Software
Metrics, Coeur d’Alene, Idaho USA, May 1997. University of Idaho.

T. M. Khoshgoftaar and . B. Allen. Predicting the order of fault-prone modules
in legacy software. In Proceedings of the Ninth International Symposium on Soft-
ware Reliability Engineering, pages 344-353, Paderborn, Germany, Nov. 1998. IEEE
Clomputer Society.

T. M. Khoshgoftaar and E. B. Allen. The stability of software quality models
over multiple releases. Technical Report TR-CSE-98-25, Florida Atlantic Univer-
sity, Boca Raton, Florida USA, Nov. 1998.

T. M. Khoshgoftaar and E. B. Allen. A comparative study of ordering and classifi-
cation of fault-prone software modules. Empirical Software Engineering: An Inter-
national Journal, 4:159-186, 1999.

T. M. Khoshgoftaar and E. B. Allen. Modeling the risk of software faults. Technical
Report TR-CSE-00-06, Florida Atlantic University, Boca Raton, Florida USA, Feb.
2000.

T. M. Khoshgoftaar and E. B. Allen. A practical classification rule for software
quality models. [EEE Transactions on Reliability, 49(2), June 2000. In press.

T. M. Khoshgoftaar, E. B. Allen, L. A. Bullard, R. Halstead, and G. P. Trio. A tree-
based classification model for analysis of a military software system. In Proceedings of
the IEEE High-Assurance Systems Engineering Workshop, pages 244-251, Niagara
on the Lake, Ontario, Canada, Oct. 1996. IEEE Computer Society.

T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom. SMART: Software mea-
surement analysis and reliability toolkit. Technical Report TR-CSE-98-21, Florida
Atlantic University, Boca Raton, FL. USA, July 1998.

FAU Technical Report TR-CSE-00-20 37

[20]

(21]

[28]

[29]

T. M. Khoshgoftaar, E. B. Allen, R. Halstead, and G. P. Trio. Detection of fault-
prone software modules during a spiral life cycle. In Proceedings of the International
Conference on Software Maintenance, pages 69-76, Monterey, CA, Nov. 1996. IEEE
Computer Society.

T. M. Khoshgoftaar, Il. B. Allen, R. Halstead, G. P. Trio, and R. Flass. Process
measures for predicting software quality. In Proceedings of the IEEE High-Assurance
Systems Engineering Workshop, Washington, DC, Aug. 1997. IEEE Computer So-
ciety.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Which software
modules have faults that will be discovered by customers? Technical Report TR-
CsE-97-55, Florida Atlantic University, Boca Raton, FL, Aug. 1997.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Which software
modules have faults that will be discovered by customers? Journal of Software
Maintenance: Research and Practice, 11(1):1-18, Jan. 1999.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Accuracy of
software quality models over multiple releases. Annals of Software Engineering, 6,
2000. In press.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. [EEE Software, 13(1):65-T1, Jan.
1996.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. The impact of
software evolution and reuse on software quality. Empirical Software Engineering:
An International Journal, 1(1):31-44, 1996.

T. M. Khoshgoftaar, E. B. Allen, A. Naik, W. D. Jones, and J. P. Hudepohl. Using
classification trees for software quality models: Lessons learned. In Proceedings of the
Third IEEE International High-Assurance Systems Engineering Symposium, pages
82-89, Bethesda, Maryland USA, Nov. 1998, IEEE Computer Society.

T. M. Khoshgoftaar, E. B. Allen, and R. Shan. Benefits of principal components
analysis with classification trees of fault-prone software modules. In H. Pham and
M.-W. Lu, editors, Proceedings: Sixth ISSAT International Conference on Reliability
and Quality in Design, Orlando, Florida USA, Aug. 2000. International Society of
Science and Applied Technologies. Invited paper. In press.

T. M. Khoshgoftaar, E. B. Allen, X. Yuan, W. D. Jones, and J. P. Hudepohl.
Assessing uncertain predictions of software quality. In Proceedings of the Sixth In-
ternational Software Metrics Symposium, pages 159-168, Boca Raton, Florida USA,
Nov. 1999. IEEE Computer Society.

FAU Technical Report TR-CSE-00-20 38

[30]

T. M. Khoshgoftaar, K. Ganesan, . B. Allen, I'. D. Ross, R. Munikoti, N. Goel, and
A. Nandi. Predicting fault-prone modules with case-based reasoning. In Proceedings
of the Fighth International Symposium on Software Reliability Engineering, pages
27-35, Albuquerque, New Mexico USA, Nov. 1997. IEEE Computer Society.

T. M. Khoshgoftaar and D. L. Lanning. An alternative modeling approach for
predicting program changes. Computer Science and Informatics: CSI Journal,
25(3):25-38, Sept. 1995.

T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya. A comparative study of
pattern recognition techniques for quality evaluation of telecommunications software.
[EEFE Journal on Selected Areas in Communicalions, 12(2):279-291, Feb. 1994.

T. M. Khoshgoftaar and R. M. Szabo. Improving code churn predictions during the
system test and maintenance phases. In Proceedings of the International Conference
on Software Maintenance, pages 5867, Victoria, BC Canada, Sept. 1994. [EEE
Computer Society.

J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

R. Kowalski. Al and software engineering. In Artificial Intelligence and Software

Engineering, pages 339-352. Ablex Publishing, Norwood, NJ USA, 1991.

F. Lanubile. Why software reliability predictions fail. [EEE Software, 13(4):131-
132,137, July 1996.

D. B. Leake, editor. Case-Based Reasoning: Frperiences, Lessons, and Future Di-

rections. MIT Press, Cambridge, MA USA, 1996.

T. J. McCabe. A complexity measure. [FEE Transactions on Software Engineering,
SE-2(4):308-320, Dec. 1976.

G. J. Myers. Composite/Structured Design. Van Nostrand Reinhold, New York,
1978.

A. Naik. Prediction of software quality using classification tree modeling. Master’s
thesis, Florida Atlantic University, Boca Raton, FL. USA, Dec. 1998. Advised by
Taghi M. Khoshgoftaar.

R. J. Offen and R. Jeffery. Establishing software measurement programs. [EEE
Software, 14(2):45-53, Mar. 1997,

S. L. Pfleeger. Assessing measurement. [FEFE Software, 14(2):25-26, Mar. 1997.

Editor’s introduction to special issue.

FAU Technical Report TR-CSE-00-20 39
[43] A. A. Porter and R. W. Selby. Empirically guided software development using
metric-based classification trees. IEFEE Software, T(2):46-54, Mar. 1990.

[44] N. F. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on Software Engineering, 18(5):410-422, May 1992.

[45] G. A. F. Seber. Multivariate Observations. John Wiley and Sons, New York, 1984.
[46] R. Shan. Modeling software quality with classification trees using principal compo-
nents analysis. Master’s thesis, Florida Atlantic University, Boca Raton, Florida,

Dec. 1999. Advised by Taghi M. Khoshgoftaar.

[47] N. T. Smith and K. Ganesan. Software design using case-based reasoning. In Pro-
ceedings of the Fourth Software Engineering Research Forum, pages 193-200, Boca
Raton, FL, Nov. 1995.

[48] C. Vasudevan and K. Ganesan. Case-based path planning for autonomous under-

water vehicles. In Proceedings of the Ninth International Symposium on Intelligent
Control, pages 160-165. IEEE, Aug. 1994.

Appendices

A Software Measurement Analysis and Reliability

Toolkit

The Software Measurement Analysis and Reliability Toolkit (SMART) is a domain-independent
research tool for case-based reasoning and other modeling techniques, whose user inter-
face is tailored for software quality modeling. An “analysis project” is our term for the
analyst’s task of building and using a software quality model for the benefit of a software
development project.

SMART was developed in 1998 with support from the Empirical Software Engi-

neering Laboratory at Florida Atlantic University, and industrial partners. Details are

FAU Technical Report TR-CSE-00-20 40

—— Case-Based

Project Reasomng

data
" Dat Module-Orde

FIT ata User odule-Order

data Manager Interface Model
R,

TEST

data Data
SR Clustering

IFigure 1: Tool architecture

documented in [19].

A.1 Toolkit Architecture

The software architecture of SMART is shown in Figure 1. The tool is implemented using
Microsoft Visual C++® and runs in a Windows 953® or ‘Nindows/N environment.
There is a central data manager that handles the fit data, which is used to build the
model, the test data, which is used to validate the model, and analysis-project data. The
models are controlled via the graphical user interface and results may be in the form of
a display, printed report, or data file.

The user interface is based on a “dialog-based property sheet”. Figure 2 shows the
General page. Tabs for the various types of models are along the top portion of the
property sheet, while the current page is displayed below the tabs. Navigation through
the menus and selection of the various available options is done with a mouse. Once
satisfied with the options selected, the analyst may save the analysis project’s data, run
an experiment, or print out statistics about the current analysis project. There is also
an online help document that explains how to use the tool.

There are currently three types of models supported by SMART. The first type

D L i L e it e b L L

FAU Technical Report TR-CSE-00-20 41

‘\Usersybusboom\PR

Figure 2: Project data

of model is for classification based on case-based reasoning (CBR). This kind of model
classifies a software module as fault-prone or not by comparing its attributes to a library of
similar past modules. The second model extends the CBR classification model with cluster
analysis [31]. This technique partitions the case library into clusters. An unclassified
module is classified according to the closest cluster. The third type of model is the
module-order model [13, 15], which predicts the rank-order of modules according to a
quantitative dependent variable. It can also be used for classification. The module-order
model is not discussed here.

On the General page, the analyst specifies the Project Name and Project Description
of the analysis project. Modeling parameters and results can be saved under this name.

The analyst specifies the names of space-delimited Ascil files holding the data (Fit Data

FAU Technical Report TR-CSE-00-20 42

File and Test Data File). The names of fields are required as the first line of a data file,
and each line thereafter is data for one software module. The fit data set consists of
data from a past software development project including values of both dependent and
independent variables. It is used to build a model and estimate model parameters, if any.

The test data set is used to simulate use of the model. It also consists of data from
a past software development project. The independent variable values are used to make
predictions as if the data were from a current software development project, and the
actual dependent variable values are used to evaluate the accuracy of the predictions.

After a model is built and evaluated it can be used to predict the classes of a current
data set. The Test Data File can be data from a current software development project
whose independent variable values are known, but whose dependent variable values are
not. Let 7 and j be indices for modules in data sets.

One of the data fields should be a software quality factor that the analyst identifies
as the Dependent Variable, such as the number of faults. Let y; be the actual value of the
dependent variable for module i, and let g; be its predicted value.

In our application, software metrics are the independent variables. The analyst
selects the independent variables, indexed by k = 1,...,m. Variables included in the
model are listed as Used metrics, and those in the data file but not in the model are listed
as Unused metrics.

The analyst can choose to standardize the independent variables so that all have the
same unit of measure. Given a raw measurement, x;z, its estimated mean, Zj, and its
estimated standard deviation, s, the standardized measurement is z;. = (z;% — &%)/ Sk-
The unit of measure is a standard deviation. In the discussion below, we use z;; to mean

either a raw or a standardized measurement, as selected by the analyst.

FAU Technical Report TR-CSE-00-20 43

The actual class of a module is defined by whether or not the dependent variable is
greater than a Threshold, #, or not. The analyst specifies thresholds for the fit and test
data sets. In many of our case studies, we use the same threshold for both. However,

the tool provides additional flexibility. The actual class of a module is given by

not fault-prone if y; < 6
Class; = (6)

fault-prone Otherwise

Not all software metrics are equally related to software faults. It is possible that
small changes in one attribute may strongly relate to the number of faults. The analyst
can specify a Weights File containing weights, wy, for each independent variable in the
model to account for various levels of importance. An Intercept Value, wg, can also be

specified on this page.

A.2 Case-Based Reasoning Features

The working hypothesis for a software quality model is this: a module currently under
development is probably fault-prone if a module with similar attributes in an earlier
version or similar project was considered to be fault-prone. Figure 3 depicts the SMART's
Case-Based Reasoning page.

The analyst specifies the data set to be used as the Case Library, usually the fit data
set. A module in the library is a case. Let ¢, be the value of the k" independent variable
for case j, and let ¢; be the vector of independent variable values for case j.

The analyst also specifies the Target Data Set whose dependent variable values are
to be predicted. Let x;; be the value of the k** independent variable for target module

i, and let x; be the vector of independent variable values for module 2. When using the

FAU Technical Report TR-CSE-00-20 44

| Target Data Set: |
C Fit

5.000 (6.667%) 12.766%

| 1200 5000 (6.667%) 6000(31579.. 2002 0885 11.702%
1.400 9.000 (12000 4000(21063. 2121 0789 13.830%
1.600 12.000(16.000.. 3000(15.7689.. 2290 0897 15.957%
1.800 12.000 (16.000.. 2.000(10526.. 2480 102 14.894%
2.000 13.000(17.333.. 1.000(5263%) 2721 113 14.894%
2.200 15.000 (20,000 1.000(5.263%) 2968 1251 17.021%
2.400 15.000(20000.. 1.000(5263%) 3269 1372 17.021%
2,600 16.000(21333.. 1.000(5263%) 3570 1497 18.085%
2.600 16.000(21333.. 1000(5263%) 3896 1626 18.085%

Figure 3: Case-based reasoning model

model, the current set of modules is the target. When evaluating the model, the test data
set is the target. When experimenting with parameter values during model development,
the fit data set can be designated as the target.

The analyst selects a Case Similarity Function which calculates a distance, d;;, between
the current target module x; and every case ¢;, where a small distance implies the modules
are very similar. Based on the distances, SMART identifies a set of cases who are “nearest
neighbors” to the current module, x;. The analyst selects the Number of Cases in this set.
The analyst also selects a solution algorithm (Case Selection Algorithm) which predicts
the dependent variable, §; of the current module, x;, and predicts its class.

The analyst can provide a List of scale factors, «, for empirical investigation. Each

value of a represents a distinct experiment over all target modules. Summary statistics

FAU Technical Report TR-CSE-00-20 45

for the experiments are listed, as shown in Figure 3.

A Type | misclassification is when a model classifies a module as fault-prone which
1s actually not fault-prone, and a Type Il misclassification is when a model classifies a
module as not fault-prone which is actually fault-prone. SMART provides counts and
percentages. SMART summarizes the accuracy of the predicted dependent variable by

average absolute error (AAFE) and average relative error (ARE) which are given by

1 X ~
AAE = ;Z|yi—yi| (7)
i=1
ARE = },iw (8)
N =1 y3+1

where n is the number of modules in the data set. The denominator of ARFE has one

added to avoid division by zero. The Overall misclassification rate is also provided.

Similarity Functions Several measures of similarity are presented in the literature
according to the problem domain, the availability of attribute data, and whether data
types are categorical, discrete, real, etc. [34]. For quantitative attributes, the city-block
distance and Euclidean distance [30] are commonly used. The Mahalanobis distance [4]
has the advantage of explicitly accounting for correlations among attributes. SMART
supports the following similarity functions.

Absolute Difference distance is also known as “city-block” distance or “Manhattan”
distance. The distance is the weighted sum of the absolute value of the difference in
independent variables between a module and a case. The weights are those provided by
the analyst. The absolute value is taken because distance is computed irrespective of

direction.

dij = Z Wi |Cjk — Tik (9)
k=1

FAU Technical Report TR-CSE-00-20 46

Euclidean Distance considers each independent variable as a dimension of an m-
dimensional space. A module is represented by a point in this space. The Euclidean
distance between a module and a case is their weighted distance in this space. The

weights are those provided by the analyst.

" 1/2
dij = (Z('wk(%—m))?) (10)

k=1

Linear Regression 1 is intended for when the weights, wy, supplied by the analyst
were estimated by multiple linear regression of the dependent variable as a function of
case attributes, c;, using some other tool, such as a spreadsheet or a statistical modeling

tool. The weights are used in a linear model.
f(cj) = wp+u Cil + ..o+ Wy Cim (]-1)

The distance is the difference in the dependent variable values predicted by the linear

model for the attributes of the module and the case.

.

d; = flc;) = f(xi) =Y wilcjn — zix) (12)

k=1

Linear Regression 2 is also intended for when the weights, wy, supplied by the analyst
were estimated by multiple linear regression of the dependent variable as a function of
case attributes, ¢;. The distance is the difference between the actual y; of the case and

the predicted y; = f(x,) of the module.
dij =y; — f(xe) =Y — Z WETik — Wo (13)
k=1

Mahalanobis Distance [4] is an alternative to Euclidean distance in cases where metrics

may be poorly scaled or highly correlated. The distance is given by

dij = (¢c; — Xz‘)ls_l (c; —xi) (14)

FAU Technical Report TR-CSE-00-20 47

where prime (') means transpose, and S is the covariance matrix of the independent
variables over all of the case library, and S™! is its inverse. In the special case where
the independent variables are uncorrelated and the variances are all the same, S is the

identity matrix and the Mahalanobis distance is the Euclidean distance squared.

Nearest Neighbors After the tool calculates distances between a module x; and all
cases using one of the similarity functions, the distances are sorted. The cases, c;,
with the smallest distances, d;;, are of primary interest. The set of nearest neighbors,
N, is an input to each solution algorithm below. The analyst selects the number of
nearest neighbors, ny € {1,3,5,7,9}. Based on a preliminary empirical investigation

with software quality data, this range appears to be adequate.

Solution Algorithms FEach solution algorithm assigns the unclassified module to a
class. Predictions of the dependent variable made by the solution algorithm can be scaled
in order to improve the accuracy of class predictions. Most of the solution algorithms

below calculate g; and then classify the module by

not fault-prone If ay;, < 6
Class(x;) = (15)
fault-prone Otherwise

To choose a preferred value of a, the analyst designates the fit data set as the case library
and also as the target data set, and supplies a list of candidate scale factors, a. The
analyst can then choose a preferred value of a based on experiment results. When the
target is the test data set and when the target is a current data set, the analyst can then
specify the preferred scale factor, a.

SMART supports the following solution algorithms.

FAU Technical Report TR-CSE-00-20 48

Unweighted average. This solution algorithm averages the dependent variable, y;, of

the closest ny modules from the case library to form a value of §; for the target module.

gi=— >y (16)

We are primarily concerned with classification, so the value predicted i1s not as important
as the predicted class, given by Equation (15).

Inverse-distance weighted average. This solution algorithm utilizes the distance mea-
sures for the ny closest cases as weights in a weighted average. Because a smaller
distance means a better match, SMART weights each case in the nearest-neighbor set by

a normalized inverse distance, ¢;;.

. 1/d;;
5 e (17)
! Zje.-'v’]/ dij
gio= Y b5y (18)
JEN

The case that is most similar to the target module will naturally have the largest weight,
and therefore play a larger role in the classification of the module by Equation (15).
Rank-weighted average. In this solution algorithm, the nearest neighbors are ranked
according to their distances from the module. Rank R; = 1 represents the best match
while R; = ny represents the worst match among the nearest neighbors. The rank-

weight, p;;, is given by

ny — R+ 1
pii = ——=——0o (19)
ZJEN RJ'
o= > Py (20)
J‘EA‘f

The module is classified by Equation (15).

FAU Technical Report TR-CSE-00-20 49

Majority vote. This solution algorithm assigns the unclassified module to the class

of the majority of the cases in the nearest-neighbor set.

q not fault-prone if majority of y; < 0 for j € N
Class(x;) = (21)
fault-prone Otherwise

A.3 Data Clustering

In addition to the basic CBR model, SMART provides an extension by cluster analysis
to enhance classification. The case library is partitioned into clusters according to the
actual class of each case. SMART compares a module to the fault-prone cluster and the
not fault-prone cluster and determines the closest group. SMART supports the same
similarity functions and solution algorithms here as in the CBR model.

The Data Clustering page (DC) in Figure 4 is similar to the CBR page. Instead of scale
factors, this page provides for a List of cost ratios, C;/C;. The analyst can calculate
a cost ratio as the ratio of the cost of a Type I misclassification, (7, to the cost of a
Type II misclassification, C';;. However, this is often difficult to estimate, and therefore,
SMART provides for experiments with a list of values. In software quality modeling, a
Type IT misclassification can be much more serious than a Type I, because the cost of
releasing fault-prone modules to analysts is usually much more expensive than wasting
effort enhancing low-risk modules. The analyst can experiment to choose a preferred
Cr/Crr value.

The analyst has the option of using a Pooled Covariance matrix, S, for the Ma-
halanobis distance measure. “Pooled” means that all data points from both clusters
are used in determining the S matrix, and “non-pooled” means that two individual S

matrices are calculated for the fault-prone cluster and the not fault-prone cluster.

FAU Technical Report TR-CSE-00-20 50

(53.333.. 0000(0.000%) 3016 42553%
| 0.20000000 24000(32000.. 1.000(5263%) 2404 26.596%
0.30000000 21.000(28.000.. 2000(10526.. 2351 24.468%
0.40000000 19.000(25333.. 2000(10526.. 2319 22.340%

- {0.50000000 1600021333 2000(10526.. 2239 19.149%
0.60000000 11.000(14667. 4000(21.053. 2287 15.957%
0.70000000 6000(10667.. 5000(26316.. 2202 13.830%

~ | 0.80000000 7000(9.333%) 65.000(26.316.. 2154 12.766%
~{0.90000000 5000(6.667%) 9.000(47366. 2282 14.694%
1.00000000 3000(4.000%) 13000 (6B.421.. 2388 17.021%

Figure 4: Data clustering model

The classification rule used here is based on our recent work with statistical clas-
sification techniques [23]. For an unclassified module, x;, let d,;(x;) be the average
distance to not fault-prone nearest-neighbor cases, and let dy,(x;) be the average distance

to fault-prone nearest-neighbor cases. The module is classified by

dg (%) e
not fault-prone 1f A > CL
Cfass(xi) = dnfp(xl) Cry (22)

fault-prone Otherwise

where C';/C; is experimentally chosen. The analyst can choose C;/Cy; by a similar
method as «, described above.

The Data Clustering page also offers Outlier Analysis. An outlier is a case that has
abnormal attributes. One module at a time is removed from the case library and its class

is predicted. If both the actual and predicted classes are the same, then the module is

FAU Technical Report TR-CSE-00-20 51

not an outlier, otherwise, it is marked as an outlier and is not used as part of the case
library. This technique is repeatedly applied to all modules from the case library until

all outliers are removed.

B Principal Components Analysis

The following description of principal components analysis (PCA) is taken from [20].
Software metrics have a variety of units of measure, which are not readily combined in a
multivariate model. We transform all metric variables, so that each standardized variable
has a mean of zero and a variance of one. Thus, the common unit of measure becomes
one standard deviation.

Principal components analysis 1s a statistical technique for transforming multivariate
data into orthogonal variables, and for reducing the number of variables without losing
significant variation. Suppose we have m measurements on n modules. Let Z be the n xm
matrix of standardized measurements where each row corresponds to a module and each
column is a standardized variable. Our principal components are linear combinations of
the m standardized random variables, Z,,..., Z,,. The principal components represent
the same data in a new coordinate system, where the variability is maximized in each
direction and the principal components are uncorrelated [45]. If the covariance matrix of
Z is a real symmetric matrix with distinct roots, then one can calculate its eigenvalues,
Ak, and its eigenvectors, ex,k = 1,...,m. Since the eigenvalues form a nonincreasing
series, A\; > ... > A,,, one can reduce the dimensionality of the data without significant
loss of explained variance by considering only the first p components, p < m, according

to some stopping rule, such as achieving a threshold of explained variance. For example,

o
()

FAU Technical Report TR-CSE-00-20

choose the minimum p such that 30_, Ax/m > 0.90 to achieve at least 90% of explained
variance.
Let T be the m x p standardized transformation matrix whose columns, t;, are

defined as
ey

VA

Let Dy be a principal component random variable, and let D be an n x p matrix with

ty = for k=1,...,p (23)

Dy, values for each column, &k =1,...,p.

Dy = Zt; (24)

D = ZT (25)

When the underlying data is software metric data, we call each Dy a domain metric.

C Detailed Empirical Results[1]

C.1 Experiments with Selected Raw Metrics

We experimented to see whether we can achieve good results by performing CBR on the
data sets using only the variables that were determined to be significant in tree-based
models built by cART [40]. We had performed the experiments for the four product
metrics and for 11 product and process metrics. During these experiments, we varied
the weights for USAGE. We wanted to see how the model built by SMART will compare
against the CART model using the same variables.

Our hypothesis was that CBR models built using SMART will perform better or similar

to the performance of the models built using tree methodology in previous research.

FAU Technical Report TR-CSE-00-20 53

Table 19: Raw-4 Model Release 2

weight 7 cases 9 cases
of USAGFE Typel Typell Type I Type 11
1 27.716% 35.979% | 32.199% 31.746%
2 27.347% 32.275% | 32.173% 27.513%
3 26.477% 31.746% | 31.355% 26.455%
4 25.976% 32.804% | 31.382% 25.926%
5 25.923% 31.217% | 30.459% 26.459%
6 25.923% 33.333% | 30.617% 26.455%
7 26.055% 33.333% | 30.643% 26.455%
8 26.002% 31.217% | 30.643% 24.868%
9 26.160% 32.275% | 30.152% 26.455%
10 26.055% 32.275% | 30.432% 26.984%

Table 19 displays the results of our experiments with the four significant product
metrics chosen in [40] for Release 2. Based on the results obtained from the experiments
with RAW-4 model for Release 2, we determined that the best model was obtained with
9 similar cases and with the weight of USAGE being 8. The scale factor for this model
was 9.00. This model seems to have the most balanced misclassification rates and one of
the lowest Type Il misclassification rates. Therefore, we will consider the performance
of this model in Releases 3, and 4 as the best model for our system. Table 20 displays
the results of our experiments with the 4 significant product metrics chosen in [40] for
Release 3. Next, Table 21 displays the results of our experiments with the 4 significant
product metrics chosen in [40] for Release 4.

The three tables, Table 22, Table 23, and Table 24 display the results of our
experiments with the 11 significant product and process metrics chosen in [40] for Releases
2,3, and 4. Likewise, as can be seen from the Table 22, the best model was found to be

the one with 9 similar cases and the weight of USAGE equal 6 (with scale factor of 9.00).

FAU Technical Report TR-CSE-00-20 54

Table 20: Raw-4 Model Release 3

weight 7 cases 9 cases
of USAGE | Typel Typell Type I Type 11
| 28.048% 31.915% | 32.284% 23.404%
2 27.418% 34.043% | 32.313% 25.532%
3 27.333% 34.043% | 31.568% 21.277%
4 27.075% 31.915% | 31.597% 21.277%
5 27.275% 31.915% | 31.597% 19.149%
6 27.132% 34.043% | 31.797% 21.277%
7 27.390% 34.043% | 31.712% 21.277%
8 27.562% 31.915% | 32.225% 21.277%
9 27.848% 27.660% | 32.284% 23.404%
10 27.790% 27.660% | 32.055% 23.404%
Table 21: Raw-4 Model Release 4
weight 7 cases 9 cases
of USAGE | Typel Typell Type | Type II
1 33.453% 34.783% | 38.806% 25.000%
2 33.402% 34.783% | 38.883% 30.435%
3 33.685% 33.696% | 39.115% 30.435%
4 33.942% 32.609% | 39.063% = 27.174%
5 34.071% 34.783% | 39.629% 27.174%
6 34.328% 33.696% | 39.707% 28.261%
7 34.568% 32.609% | 39.707% = 28.261%
8 34.817% 31.522% | 39.604% 29.348%
9 34.766% 31.522% | 39.398% 29.348%
10 34.843% 31.522% | 39.372% 29.348%

The results of the prior research using a tree-based model [40] can be found in rows
1 and 2 of Table 9 in the body of this paper. The CBR models and the tree-based models
performed very similarly for 11 product and process variables. The same is true for CBR
RAW-4 model’s comparison with the tree-based model for 3 product metrics and USAGE.
The Tree-based models did perform better for the Release 4 but not for Releases 2 and

3. All four models in this experiment performed acceptably.

FAU Technical Report TR-CSE-00-20

Table 22: Raw-11 Model Release 2

weight 5 cases 7 cases 9 cases
of USAGE | Typel Typell | Typel Typell Type I Type 11
1 21.941% 39.683% | 26.793% 31.217% 31.487% 25.926%
2 22.099% 42.857% | 27.954% 31.746% 32.410% 26.455%
3 22.126% 43.386% | 27.136% 31.746% 32.226% 25.926%
4 21.862% 42.328% | 27.558% 33.862% 32.015% 28.042%
5 21.730% 42.328% | 27.136% 35.450% 31.514% 25.397%
6 21.414% 41.799% | 26.820% 33.862% | 31.461% 24.868%
7 21.203% 40.212% | 26.477% 33.333% | 31.250% 26.984%
8 21.123% 39.683% | 26.530% 32.804% | 31.039% 25.926%
9 21.255% 40.741% | 26.661% 33.333% | 30.723% 26.455%
10 21.123% 40.212% | 26.582% 32.275% | 30.934% 27.513%
Table 23: Raw-11 Model Release 3
weight 5 cases 7 cases 9 cases
of USAGE | Typel Typell | Typel Typell Type I Type 1
1 23.125% 36.170% | 29.078% 27.660% | 33.772% 21.277%
2 23.469% 31.915% | 29.164% 25.532% | 33.515% 25.532%
3 23.011% 38.298% | 28.678% 23.404% | 32.799% 23.404%
4 23.039% 31.915% | 28.163% 23.404% | 32.627% 19.149%
5 23.211% 27.660% | 27.905% 21.277% 32.713% 19.149%
) 23.383% 25.532% | 28.248% 23.404% | 32.713% 21.277%
7 23.240% 27.660% | 28.392% 21.277% 32.856% 19.149%
8 23.154% 27.660% | 28.363% 19.149% | 32.999% 14.894%
9 23.383% 25.532% | 28.449% 14.894% | 33.314% 14.894%
10 23.440% 25.532% | 28.563% 17.021% | 33.228% 17.021%

b |

o

C.2 Comparisons of Models With Selected PCA Metrics and

Models Using All PCA Metrics

The purpose was to determine how CBR models for these variables compare to the CBR
models using all PCA domain variables.

Our hypothesis was that model PCA-10 would perform similarly or better than the

FAU Technical Report TR-CSE-00-20 56

Table 24: Raw-11 Model Release 4

weight H cases 7 cases 9 cases
of USAGE | Typel Typell | Typel Typell Type 1 Type 1
1 27.406% 47.826% | 34.303% 34.783% 14.025% 47.826%
2 27.226% 45.652% | 34.097% 35.870% | 39.629% 30.435%
3 28.178% 45.652% | 34.766% 34.783% | 40.144% 30.435%
4 28.718% 43.478% | 35.100% 32.609% | 40.556% 32.609%
5 28.899% 43.478% | 35.409% 33.696% 41.148% 31.522%
6 29.233% 42.391% | 35.666% 34.783% | 40.968% 30.435%
7 29.027% 41.304% | 35.589% 33.696% | 41.276% 29.348%
8 29.362% 39.130% | 36.258% 32.609% | 41.148% 26.087%
9 29.516% 38.043% | 36.155% 32.609% | 41.405% 27.174%
10 29.465% 39.130% | 36.130% 32.609% 41.431% 23.913%

model PCA-5 whose independent variables were selected in the previous work [46]. Like-
wise, we expected that model PCA-18 would perform similarly or better than the model
PCA-7 whose independent variables were selected in the previous work. If so, this would
support the hypothesis that CBR does not need any pre-selection of metrics to create an
effective quality prediction model, which again would indicate the usefulness of CBR as
a quality prediction methodology.

Table 25, Table 26, and Table 27 display the results of our experiments with
six significant product and process PCA domain metrics as well as USAGE that were
selected in [46] for Releases 2, 3, and 4. Based on the results of the Release 2, we were
able to choose the best model, which was the one using 9 similar cases with the weight
of 10 for USAGE (with a scale factor « of 9.00). The model we chose also had the lowest
cross-validation misclassification rate (the tables for Release 1 models were not included
here). After the measurements of the model performance, we discovered that we, indeed

made the right choice, since the CBR model did perform better for releases 3 and 4.

FAU Technical Report TR-CSE-00-20

Table 25: PCA-7 Model Release 2

weight T cases 9 cases
of USAGE Typel Typell Type I Type 11
1 24.789% 43.386% | 28.270% 39.153%
2 24.535% 43.915% | 29.246% 35.450%
3 24.288% 44.974% | 28.534% 38.624%
4 24.499% 45.503% | 28.797% 38.624%
5 24.552% 47.090% | 28.771% 40.741%
6 24.420% 48.148% | 28.850% 41.270%
7 24.209% 49.206% | 28.745% 42.857%
8 23.998% 47.619% | 28.613% 39.683%
9 24.077% 48.677% | 28.613% 39.683%
10 24.051% 48.148% | 28.507% 38.095%
11 23.734% 47.090% | 28.428% = 38.624%

Table 26: PCA-7 Model Release 3

weight T cases 9 cases

of USAGE | Typel Typell Type L Type 11
1 25.587% 36.170% | 29.679% 31.915%
2 25.444% 34.043% | 29.994% = 27.660%
3 25.100% 34.043% | 29.336% 23.404%
4 25.472% 31.915% | 29.966% 25.532%
5 25.186% 29.787% | 29.622% 21.277%
6 24.814% 29.787% | 29.136% 21.277%
7 24.957% 34.043% | 29.565% 23.404%
8 24.814% 34.043% | 29.508% 25.532%
9 25.014% 34.043% | 29.708% 27.660%
10 24.843% 34.043% | 29.737% 21.277%
11 25.423% 34.043% | 29.708% = 23.404%

Table 28, Table 29, and Table 30 display the results of our experiments with model
PCA-5 whose independent variables were selected in [46] for Releases 2, 3, and 4. Based
on the results of the Release 2, the best results for the PCA-5 model were found to be

for 9 similar cases, the weight of USAGE of 6 with a scale factor of 9.00. We compared

these results to the results of the experiments with PCA-10 model.

57

FAU Technical Report TR-CSE-00-20 58

Table 27: PCA-7 Model Release 4

weight | 7 cases 9 cases
of USAGE | Typel Typell Type I Type 11
1 27.226% 48.913% | 32.347% 42.391%
2 28.230% 47.826% | 33.608% 40.217%
3 28.513% 44.565% | 33.634% 36.957%
4 28.487% 42.391% | 34.174% 33.696%
5 28.616% 43.478% | 34.225% 35.870%
6 28.821% 42.391% | 34.457% 34.783%
7 28.744% 42.391% | 34.714% 34.783%
8 28.693% 41.304% | 34.689% 34.783%
9 28.873% 42.391% | 34.225% 34.783%
10 28.976% 42.391% | 34.328% 32.609%
11 29.104% 44.565% | 34.508% 32.609%

Table 28: PCA-5 Model Release 2

weight 7 cases 9 cases
of USAGE Typel Typell Type 1 Type 11
1 27.453% 37.566% | 32.015% 33.333%
2 28.059% 37.037% | 32.806% 31.217%
3 27.980% 37.037% | 32.911% 32.275%
4 27.505% 35.979% | 32.358% 30.159%
5 25.791% 35.797% | 32.094% 28.571%
6 26.820% 33.862% | 31.804% 28.571%
7 26.767% 35.450% | 31.593% 29.101%
8 26.714% 35.450% | 31.145% 31.217%
10 26.292% 37.566% | 31.013% 31.217%
11 26.319% 37.566% | 30.670% 31.217%

Table 31, Table 32, and Table 33 display the results of our experiments with all
18 product and process PCA domain and execution metrics that were obtained in [46]
for Releases 2, 3, and 4. Based on the model for the Release 2, the best results for the
models with 18 variables were found with 9 similar cases and the weight of USAGE of

10, with a scale factor of 9.00.

FAU Technical Report TR-CSE-00-20 59

Table 29: PCA-5 Model Release 3

weight 7 cases 9 cases
of USAGE Typel Typell Type I Type 11
1 29.937% 42.553% | 34.717% 34.043%
2 29.794% 46.809% | 34.946% 34.043%
3 29.622% 51.064% | 34.659% 38.298%
4 20.508% 48.936% | 34.402% 38.298%
) 29.393% 44.681% | 34.373% 29.787%
6 20.479% 38.298% | 33.829% 29.787%
7 20.193% 38.298% | 33.429% 29.787%
8 28.993% 36.170% | 33.200% 29.787%
10 20.021% 38.298% | 33.314% 29.787%
11 28.935% 38.298% | 33.457% 27.660%
Table 30: PCA-5 Model Release 4
weight 7 cases 9 cases
of USAGE Typel Typell Type 1 Type I1
1 33.402% 36.957% | 39.629% 29.348%
2 34.431% 33.696% | 41.122% 29.348%
3 35.023% 33.696% | 41.019% 30.435%
4 35.383% 34.783% | 41.173% 30.435%
5 35.615% 33.696% | 41.431% 30.435%
6 35.306% 33.696% | 41.482% 28.261%
7 35.718% 31.522% | 41.457% 27.174%
8 35.769% 32.609% | 41.457% 28.261%
10 35.950% 31.522% | 41.740% 26.087%
11 35.692% 32.609% | 41.765% 27.174%

Table 34, Table 35, and Table 36 display the results of our experiments with all
10 product PCA domain metrics that were obtained in [46] for Releases 2, 3, and 4. We
had an easier time choosing the best model for the experiments with all 10 PCA product
metrics. Based on Release 2, we were able to determine that the best model uses 9 similar

cases and the USAGE weight at 1. This model was using a scale factor of 9.00.

FAU Technical Report TR-CSE-00-20 60

Table 31: PCA-18 Model Release 2

weight 7 cases 9 cases

of USAGE | Typel Typell Type | Type II
1 23.207% 43.386% | 27.848% 38.624%
2 23.444% 43.386% | 27.716% 37.566%
3 23.128% 42.328% | 27.795% 37.037%
4 22.864% 43.915% | 27.400% 37.566%
5 22.943% 43.386% | 26.741% 37.566%
6 22.627% 42.857% | 26.292% 37.566%
7 22.495% 42.328% | 26.503% 38.095%
8 22.389% 42.328% | 26.741% 37.037%
9 22.284% 41.799% | 26.635% 37.037%
10 22.984% 42.857% | 26.714% 34.921%
11 22.310% 42.857% | 26.530% 35.979%

Table 32: PCA-18 Model Release 3

weight T cases 9 cases
of USAGE Typel Type Il Type 1 Type 11
1 23.354% 44.681% | 27.962% 34.043%
2 24.041% 40.426% | 28.420% 29.787%
3 24.299% 38.298% | 28.392% 31.915%
4 24.442% 40.426% | 28.649% = 27.660%
5 23.927% 38.298% | 28.477% 29.787%
6 23.612% 38.298% | 28.563% 27.660%
7 23.497% 38.298% | 27.991% 25.532%
8 23.412% 36.170% | 27.876% 27.660%
9 23.068% 36.170% | 27.647% 27.660%
10 22.896% 36.170% | 27.390% 27.660%
11 22.982% 36.170% | 27.161% 29.787%

C.3 Comparisons Between our Raw Metric Models And Our

PCA-Generated Models

We experimented to see how the results of using CBR with the raw metrics compare

to results achieved using CBR for the pCcA-generated metrics. We had performed the

FAU Technical Report TR-CSE-00-20 61

Table 33: PCA-18 Model Release 4

weight 7 cases 9 cases
of USAGE | Typel Typell Type 1 Type II
1 28.049% 36.957% | 32.398% 32.609%
2 28.487% 34.783% | 33.942% 30.435%
3 29.233% 36.957% | 34.637% 30.435%
4 29.979% 35.870% | 35.306% 30.435%
5 30.262% 34.783% | 36.130% 29.348%
6 30.340% 35.870% | 36.336% 29.348%
7 30.211% 34.783% | 36.027% 30.435%
8 30.005% 34.783% | 35.821% 30.435%
9 30.005% 35.870% | 36.181% 29.348%
10 30.082% 38.043% | 36.078% 29.348%
11 29.825% 39.130% | 35.950% = 29.348%
Table 34: PCA-10 Model Release 2
weight 7 cases 9 cases
of USAGE Typel Typell Type I Type 11
1 27.162% 36.508% | 32.120% 28.571%
2 27.637% 35.979% | 32.806% 30.688%
3 27.532% 35.450% | 32.621% 30.688%
4 27.558% 37.037% | 32.358% 31.217%
5 27.611% 37.566% | 32.516% 32.275%
6 27.400% 38.095% | 32.384% 33.333%
7 27.242% 39.153% | 31.751% 32.804%
8 27.162% 38.624% | 31.751% 31.746%
10 26.846% 40.212% | 31.145% 33.862%
11 26.688% 39.683% | 31.039% 33.862%

experiments for the 4 selected product metrics and for 11 selected product, process and
execution as well as all 28 product metrics and compared the results of these models to
the results of all four models that use PCA-generated metrics. During these experiments,
we varied the weights for USAGE.

Our hypothesis was that the models using raw metrics will not be significantly worse

FAU Technical Report TR-CSE-00-20 62

Table 35: PCA-10 Model Release 3

weight 7 cases 9 cases
of USAGE | Typel Typell Type 1 Type 11
1 28.678% 38.298Y% | 33.944% 27.660%
2 29.193% 31.915% | 34.688% 21.277%
3 28.935% 31.915% | 33.944% 21.277%
4 28.563% 31.915% | 34.345% 21.277%
5 28.420% 34.043% | 33.944% 21.277%
6 28.334% 34.043% | 33.658% 19.149%
7 28.392% 34.043% | 33.371% 14.894%
8 28.392% 27.660% | 33.257% 14.894%
9 28.477% 27.660% | 33.343% 14.894%
10 28.535% 25.532% | 33.028% 14.894 %
11 28.248% 27.660% | 32.799% 14.894%
Table 36: PCA-10 Model Release 4
weight 7 cases 9 cases
of USAGE Typel Typell Type 1 Type 1L
1 32.141% 31.522% | 38.111% 27.174%
2 33.711% 29.348% | 39.887% 22.826%
3 34.303% 27.174% | 40.093% = 22.826%
4 34.380% 29.348% | 40.170% 25.000%
5 34.766% 31.522% | 40.607% 28.261%
6 34.817% 31.522% | 41.045% 28.261%
7 34.792% 34.783% | 40.736% 29.348%
8 34.586% 32.609% | 40.968% 29.348%
9 34.792% 32.609% | 41.045% 28.261%
10 34.689% 33.696% | 40.736% = 28.261%
11 34.740% 32.609% | 40.839% 28.261%

than the models using PCA-generated metrics. If this statement is true, we can again show
that CBR does not need preprocessing of any sort (such as PCA) to create an acceptable
model. Table 37, Table 38, and Table 39, display the results of our experiments with
all 28 raw product metrics for Releases 2, 3, and 4. These experiments were carried out

to see whether it is necessary to pre-select significant raw metrics before using a CBR

FAU Technical Report TR-CSE-00-20 63

Table 37: Raw-28 Model Release 2

weight 7 cases 9 cases
of USAGE Typel Typell Type I Type 11
1 27.901% 37.037% | 32.595% 31.217%
2 27.215% 36.508% | 32.147% 31.217%
3 26.978% 36.508% | 32.384% 33.333%
4 26.688% 39.153% | 31.587% 33.862%
5 26.572% 40.741% | 31.646% 33.862%

6 26.477% 39.153% 31.672% 33.862%
7 26.292% 37.566% 31.725% 33.333%
8 25.686% 39.153% | 30.459% 31.217%
10 25.976% 38.095% 30.643% 32.275%
Table 38: Raw-28 Model Release 3
weight 7 cases 9 cases
of USAGE | Typel Typell Type I Type II
1 29.136% 31.915% 33.600% 25.532%
2 29.136% 25.532% 33.515% 21.277%
3 28.706% 31.915% | 33.371% 25.532%
4 28.506% 34.043% 33.171% 21.277%
5 28.592% 27.660% 33.400% 23.404%
6 28.477% 27.660% 33.457% 25.532%
7 28.392% 27.660% 33.257% 25.532%
8 28.392% 27.660% | 32.570% 25.532%
10 28.077% 27.660% 28.077% 27.660%

tool. Here, we were able to see that the best results were achieved by selecting a model

that uses 9 similar cases with the weight of USAGE at 2 (scale factor equals 9.00).

FAU Technical Report TR-CSE-00-20

Table 39: Raw-28 Model Release 4

weight 7 cases 9 cases
of USAGE | Typel Typell Type I Type 1T
1 35.358% 36.957% | 40.736% 28.261%
2 36.516% 33.696% | 41.971% 23.913%
3 36.670% 35.870% | 42.280% 27.174%
4 36.644% 33.696% | 42.460% 25.000%
5 35.924% 28.261% | 42.203% 23.913%
6 36.361% 29.348% | 42.357% 22.826%
7 36.464% 29.348% | 42.383% 23.913%
8 36.490% 29.348% | 42.383% 22.826%
10 36.902% 28.261% | 42.460% 21.739%

64

